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Introduction

Abstract

Redundant gene functions are ubiquitous, and they are a potentially
important source of evolutionary innovations on the biochemical level, It is
therefore highly desirable 10 understand the mechanisms governing their
evolution. Gene duplication is clearly a prominent mechanism generating
redundant genes. However, because redundancy provides a protective effect
against deleterious mutations, natural selection might be involved in gener-
ating and maimntaining partial redundancy. Although much experimental data
on redundant genes have accumulated, no data are available that could
clucidate what role selection has in their evolution. As a first step towards
answering this question, a conceptually simple mathematical model for the
evolution of redundancy is introduced. Its main result is that selection cannot
only maintain but also increase redundancy among genes in a population
provided (i} that mutation generates sufficient variation in redundancy and
{ii) that populations are large. The population biological process at work is
somewhat unusual. Selection does not act on the (nonexisting) differential
fitness between individuals with different degrees of redundancy. Rather, it
acts through the low number of offspring with deleterious mutations that
individuals with redundant genes will generate. Morcover, even if populations
are small and variation in redundancy is low, selection will substantially slow
the ‘decay’ of redundancy caused by mutation and genetic drift, Methodolog-
ical problems in determining degrees of redundancy experimentally are
discussed, as well as issues concerning the relation of redundancy to genetic
canalization. The latter two phenomena necessitate a differentiated view of
neutral mutations, where some neutral mutations are only neutral because
their effects on gene products are absorbed by the epigenetic system.

see Tautz, 1992; Thomas, 1993). Among these, no
obvious commonalities exist with respect to the bio-

Genes with redundant functions are ubiquitous. Numer-
ous examples have been found in invertebrates (Hoff-
mar, 1991; Cadigan ef al., 1994; Gonzéles-Gaitdn et al.,
1994; Li & Noll, 1994a,b), vertebrates (Joyner et al,, 1991;
Higashijima et al., 1992; Saga et al,, 1992; Lohnes et al.,
1993; Lufkin et 4l, 1993; Condie & Capecchi, 1995

Hanks ef al., 1995) and micro-organisms (Kataoka ef a/.,

1984; Basson et al, 1986; Lundgren e aql, 199];
Goldstein, 1993; Goodson & Spudich, 1995; for reviews
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chemical role of the redundant genes. They include
transcriptional regulators {Gonzéles-Gaitdn et al., 1994; Li
& Noll, 1994ab; Condie & Capecchi, 1995; Hanks
et al, 1995), extracellular matrix proteins (Saga et af,
1992}, protein kinases (Hoffmann, 1991; Lundgren et al,,
1991), genes potentially involved in intracellular foree
generation {Goldstein, 1993; Goodson & Spudich, 1995)
and enzymes of metabolic pathways (Basson ef al., 1986).
Despite this functiona! diversity, all genes with redun-
dant functions share one property. The loss-of-pheno-
type of the gene is absent, or it is much weaker than
expected from independent lines of evidence, Such lines
of evidence include strong sequence conservation (Ka-
taoka et al., 1984; Joyner et al., 1991; Goldstein, 1993) or
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the relation of a morphological defect to the size of the
expression domain for gene products that presumably act
in a cell-autonomous way (Joyner et al,, 1991; Higashi-
jima, 1992; Condie & Capecchi, 1995). Sometimes the
expression of such genes might serve no biological
purpose at all. In general, however, one or more other
genes exist with functions indistinguishable from (e.g.
Basson et al., 1986; Higashijima ef al, 1992) but at least
overlapping with (e.g. Joyner et 4l, 1991, Lufkin et 4/,
1993; Condie & Capecchi, 1995) that of the presumably
redundant gene. These two cases are often referred to as
full and partial redundancy. The strong phenotype of
double (triple etc.) mutations in the respective genes
then serves as proof that they do fulfil a biclogical
function,

The available evidence suggests that gene duplication
events are the main source of redundant gene functions
(e.g. Basson ¢t al., 1986; Joyner et al., 1991; Higashijima
et al, 1992), Immediately after a duplication becomes
fixed in a population, the two copies (original/duplicate)
are completely redundant, Subsequent mutations either
cause the silencing of one of the two copies or cause a
functional diversification between them. In the latter
case, redundancy will decrease over time. However,
detailed genetic studies on the early development of
Drosophila (Hilskamp & Tautz, 1991; Schulz & Tautz,
1995) have led to the supgestion (Tautz, 1992) that
previously dissimilar gene functions may have been
recruited into redundant control mechanisms of devel-
opmental pattern formation events. This would imply
that redundancy can secmehow be selected for because it
‘masks’ mutations that would otherwise be deleterious. A
similar masking of deleterious mutations has been
involved in models for the evolution of diploid life cycles
{Bengtsson, 1992; Otto & Goldstein, 1992} and of dom-
inance modifers (e.g. Wagner & Biirger, 1985). The idea
is attractive not only because of the potential ‘buffering’
effect of redundancy, but also because redundant gene
functions may be an imporiant source of evolutionary
novelty on the biochemical level (Walsh, 1995).

The subject of this contribution is to determine what
role natural selection might play in the evolution of
redundancy. To this end, a conceptually simple mathe-
matical model is introduced. In similar contexts, e.g. in
studies regarding the evolution of dipioidy or dominance
(Wagner & Biirger, 1985; Bengtsson, 19%2; Otto &
Goldstein, 1992), modifier models are quite popular.
However, a modifier approach has been deliberately
avoided in this case. The reason is that nothing in the
available evidence supports the existence of modifier loci
of redundancy. The assumption of modifiers would be
quite unnatural in this context. Instead, redundancy can
be easily understood on the basis of functionally simiiar
gene products alone (see also below), and the structure of
the model presented here takes this into account. Its only
essential ingredients are the following three assumptions.
First, it 15 assumed that the functional similarity among

fwo or more genes can be guantified in some way. The
appropriate measure of redundancy will clearly depend
on the type of genes under consideration. Two examples
may help to illustrate what form such a measure could
take. Consider first genes encoding transcriptional regu-
lators. Thelr products frequently regulaie the expression
of a large number of genes. Functional differences among
transcriptional regulators with similar protein sequences
may exist, among other reasons, through differences in
their DNA binding domain oligomerization domain or
rranscriptional activation domains {Ptashnie, 1988; Lamb
& McKnight, 1991; Tjlan & Maniatis, 1994). If two
similar transcriptional regulators influence the expres-
sion a nonidentical, but overlapping, set of genes, then
the extent of overlap, i.e. the fraction of genes that they
both regulate in the same way, could be taken as a
measure of functional redundancy. As a second example,
in organismal development often two or more genes with
apparently identical biochemical functions show a non-
congruent, but overlapping, spatiotemporal gene expres-
sion pattern. Here, partial redundancy arises through the
divergence of cis-acting {enhancer or promoter) regions
which drive the genes’ expression patterns {Cadigan et al.,
1994; 1i & Noll, 1994a,b; Hanks et al.,, 1995; Wang et al.,
1996). It is well known that the expression of a gene in
different tissues is frequently driven by different enhan-
cer elements (Carroll, 1990). Thus, mutations in the
reguliatory region of a gene may abolish the expression of
a gene (i) in a region where it is coexpressed with its
partially redundant partner, (i) in a region where it is
expressed by itself or (ili) in both regions. The experi-
mental evidence suggests that phenotypic effects of
mutations are likely to occur only in regions where the
genes are not coexpressed (for genes acting cell-auion-
omously). Clearly, the smaller the overlap of the
expression domains of such partially redundant genes,
the more likely it is that a regulatory mutation will
abolish the expression of a gene in a region where it is
not coexpressed with the redundant partner. Thus, the
extent of overlap in expression patterns can serve as a
measure of redundancy among the genes. Quantitative
experimental data on such expression patterns are still
sparse. However, gene expression studies involving large
numbers of genes that will provide such data are
becoming increasingly feasible as various genome pro-
jects are advancing rapidly (e.g. Nowak, 1995}.

The second central assumption of the model is that
mutations can change the functional overlap or redun-
dancy among genes. Third, it is assumed that mutations
in genes with low redundancy are more likely to have
deleterious effects than mutations in genes with high
redundancy. The last assumption deserves further
comment, Virtually none of the available studies of
redundant genes explicitly deals with fitness effects of
loss-of-function mutations in redundant genes. Such
effects may be profound even if morphological effects are
weak or nonexistent {e.g. Lufkin e al., 1993), Also, most
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cases reported in the literature concern the effects of loss-
of-function mutations. Naturally occurring mutations
will cover a rouch wider spectrum of effects. Assumption
three is essentially an extrapolation from weak morpho-
logical effects to weak fitness effects of mutations. It says
that compared to a strong {morphological} effect of a loss-
of-function mutation, a weaker {(morphological) effect of
a loss-of-function mutation due to redundancy will cause
a lower probability of some mutation having a deleterious
fitness effect.

The model is used to assess the influence that selection,
mutation, drift and linkage may have on the evolution of
partial redundancy. Questions regarding the rate of gene
silencing and on the evelution of families of fully
redundant genes could easily be incorporated. However,
they will not be addressed here, because a sizable
literature exists already in this area {(e.g. Ohnao, 1970;
Nei & Roychoudhury, 1973; Kimura & King, 1979;
Maruyama & Takahata, 1981; Watterson, 1983; Marshall
et al., 1994; Walsh, 1995},

Model and resuits

Selection and mutation

The model is concerned with an infinite population of
haploid, dicecious, randomly mating organisms. The
genic mutation rate is denoted as pu (u < 1), and it is
assumed that all mutations that are not neutral on the
phenotypic level are effectively lethal. Neutral mutations
that do not affect any aspect of the function of a gene
product are not considered. Both the assumption of
lethality and the assumption of haploidy are used merely
because they best illustrate the central principles in-
volved.

The model will be developed in two steps. First, a
simplified ‘symmetric’ model for redundancy among two
genes is introduced. Second, a more general model for
redundancy among two genes, suitable to describe the

evolution of redundancy among many genes, is devel-

oped. The merit of the first model lies in the fact that
important properties of the second model can be de-
scribed in terms of the formally much simpler first model.
For two genes with overlapping functions, the central

- concept of the model lies in the notion that this overlap
can be quantified by some measure, which will be called
the redundancy’ between these genes. More specifically,
the variable r, 0 < r £ 1, denotes the probability that a
mutation in either gene has no deleterious phenotypic
effect. If r = 0, any mutation will have a deleterious
effect, and the respective organism will not survive to the
next generation. Bor r> 0, if one of the two genes is
affected by a mutation, it is assumed that the effect of the
mutation will be strongly deleterious with probability
1 - r, such that the respective organistn will not survive
to the next generation. With probability r, the organism
will survive, in which case the mutation is phenotypi-
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cally neutral despite the fact that it affected the function
of one of the genes. The effect of the mutations was
‘buffered’ by the other gene. In terms of one of the
concrete examples discussed in the introduction, one
roight think of r as a measure of the spatiotemporal
overlap in expression pattern between two developmen-
tal gemes whose products have identical biochemical
functions. Redundancy r will be high if their spatiotem-
poral expression domains are congruent; it will be zero if
they are expressed in disjoint body regions or nonover-
lapping time-intervals. While not affecting the fitness of
an organism, a mutation may change r itself. This will be
modelied by a {conditional} probability density m{r"/r),
where

wm(r*|r)dr

denates the probability that the redundancy of a gene
pair with redundancy r before mutation lies in
{r*.r* + dr*) after mutation. For now, only the minimal
assumption is made that mutation changes redundancy
on average by a factor 4 (0 <2 €1}, ie.

/l t*m(rt|r)drt = Ar. (1)

A =1 implies that some mutations increase r, while
others decrease jt, but that mutations leave r on average
unchanged. More realistic may be the case of 1< 1,
where mutations cause r to decrease on average, i.e. they
are responsible for the divergence of two genes’ func-
tions. In this scenario, mean redundancy in a pepulation
would ‘decay’ exponentially in the absence of natural
selection on the two genes’ function. Here, it will be
assumed that A > 0.5. Notice that a value of 1 as small as
0.5 implies that each mutation reduces r to half of its
value before mutation, ie. a very rapid decay of r
through mutation.

On the level of a population of organisms, mutation
and selection have opposing effects on the distribution of
r within the population. While mutation tends to reduce
r, selection preferentially eliminates organisms with low r
because they have a higher probability of generating
mutants with deleterious phenotypic effects. Denote as
7:(r) the probability density of the distribution of r within
the population at time . With the notation introduced
thus far, the following integral equation describes the
evolution of redundancy in the population, assuming
that generations are nonoverlapping:

(1 —2p () + Zu‘];,l o (Zymir|z)dz
(1= 26)+2u fyope(z)dz

The left-hand term of the numerator is the contribution
to the next generation of the fraction 1 - 2u of the
population that was not affected by mutations. The right-
hand term of the numerator represents the fraction of the
population that was affected by neutral mutations
changing redundancy. The integrand of this term,

Praa(r) = {2)
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zp,(2)m(r|z)dz, represents the probability that the redun-
dancy of a mutated individual before mutation was z,
that the mutation was neutral and that the mutation
changed redundancy from z to r. The denominator is a
narmalization factor representing the fraction of organ-
isms that survive in generation & It is simply the fraction
of the population in which ne mutation (lefi-hand tevm)
or only neutral mutations occurred (right-hand term}.
The factors 2 in front of u are a consequence of the two-
gene system considered, and aof the assumption that
#? 7= 0. Note that the mean fitness of the population
‘after selection’ , L.e. the mean fitness of those individuals
that bear no lethal mutations, will be equal to one
because all phenotypically deleterious mutants are elim-
inated. Only the distribution of redundancy values in the
population changes via mutation and natural selection,
Two initial conditions pe(r) are of special importance.
First, two genes may have very little functional overlap
in all organisms of the population. In this case
po(r) = 8(r —¢) will be used, where 0<e< 1 and ¢
denotes the Dirac delta function {Arfken, 1985). Second,
and perhaps more importantly, one may study the
evolution of redundancy as a result of a recent gene
duplication event, after which the duplication has
become fixed in the population. For this case,
polr) = 8(r — 1 +¢) will be used. The fixation of the
duplication is of no concern here. Even if gene duplica-
tions do not confer a selective advantage in and of
themselves, they will become fixed in a population
provided that they occur at a finite rate, as Clark (1994)
has shown.

The accumulation of pseudogenes by null-mutations

shortly after gene duplication events could easily be
incorporated into the model, because null-mutations are
a special case of mutation events reducing r from 1 to 0.
However, here only the gradual evolution 7, and not the
complete loss of gene functions (gene silencing} will be
studied, because a large body of literature already exists
in the latter area (e.g. Ohno, 1970; Nei & Roychoudhury,
1973; Kimura & King, 1979; Maruyama & Takahata,
1981: Watterson, 1983; Qhta, 1987; Marshall ef al,, 1994;
Walsh, 1995). '
_ Denpte the kth moment of r in generation I as
rk = [0 t*p,(r)dr, and write ¥ for 71, Bquations 1 and 2
then result in the following two recursion relations for
the first- and second-order moments:

o (20T 4-2udrf
LT = 20 4 20

(3a)
and
- _(1- 202 4+ 2p [y Jo rPapi(2)m(riz)dzdr
1T (1 — 2p) + 247 '

Denote as poo(r) any equilibriwm distribution of ()
attained in the limit as t — co. A simple manipulation of
eqn 2 shows that p(r) can be expressed as

(36)

_ fa polDym(riz)dz

Poc(r) = S
Jy x(z)dz

and that it is therefore independent of the mutation rate.

This holds a fortiori for all moments at equilibrium.
Equation 3 thus becomes

(4)

2
S (58)
rOG
and
1 el
T fo Jy Pap(imiriz)dedr 5b)
rm
Equatien 5a shows that the relation
e (6)
2

holds in equilibrium. Note the generality of this relation.
It holds regardless of any specific assumptions about the
mutation process other than eqn 2, regardless of the
initial distribution of redundancy po{r), and regardless of
the particular nature of the equilibrium distribution
P(r). The left-hand side can also be written in terms of
the coefficient of variation of r, yielding

A @)

where o, is the standard deviation of r in equilibrium.
Figure 1 shows a plot of this analytical prediction
together with the results of Monte Carlo simulations of
the underlying selection-mutation process for 0.5 < A <
0.99, and for a distribution of mutation effects that is

—_
[

—_
[

Coefficient of Variation

:

0.5 0.6 0.7 0.8 0.9

Fig. I Coefficient of varlation ¢,/ In mutation-selection equilib-
riurn. Shown are the analytical prediction (eqn 7) {dashed line)
along with resulls of Monte-Carlo simulations {dots) of the woder-
lying selection-mutation process. Simulations were carried out as
described in the appendix, Sknulation parameters:
N=10%p=1,c=03 Fp=1
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Gaussian in the interior of (0, 1). A description of the
numerical methods used in these simulations is given in
the appendix. It follows from eqn 7 that mean equilib-
riumn redundancy r approaches zero as 4 — 0, ie. for
small 4, redundancy decays so rapidly that selection
cannot effectively counteract that decay. For 4 — 1,
eqn 7 implies that 6. — 0. In this case, the only
candidates for equilibrium distributions are those de-
scribed by Dirac delta distributions, pe(r) = 8{r — 7y}, for
some rp, 0 € ry < 1. However, while the mean of such
distributions is invariant under the evolution egn 2 for
4 = 1, the second moment, j;}] 23(r—ro)dr =72 is in
general not, Substituting 8(r — ry) into the right-hand
side of eqn 2 and calculating the second moment of the
resulting distribution yields

. (1-2p)r2 + 2urm?(ry)
(1 =24} + 2pr0

where E(nﬂ:j& rPm{r|rp)dr. The right-hand side is
equal to r2 only if m{r|ry) = 8(r — rp). Thus, 8(r ~ ry} is a
candidate for an equilibrium distribution in this case.
However, it is shown in the appendix that d(r — ry) is not
a stable equilibrium distribution for any ry <1 and
A = 1. Therefore, §(1 — r} is the only possible candidate
for a stable solution to the long-term behaviour of the
system. In other words, i mutations do leave r, on
average, unchanged, the only possible equilibrium dis-
tribution of r is one in which all organisms have
redundancy r = I, because mutation does not ‘resist’
the force of selection which drives the population
towards high mean redundancy.

To permit analysis of mutation-selection equilibria in
the interfor of (0, 1) for 0 < A < 1, one merely has te
assume that the variance of redundancy caused by
mutations is approximately comstant for values of r
sufficiently distant from the boundary r = 0, ie,
al, = f[,l (r* — ArYm(rir)dr* = const. An intuitive argu-
ment can be made to suggest that there exists an
equilibrivm distribution p,,{r) whose mean is indepen-
dent of Fy. The absolute difference in mean redundancy
before and after mutation decreases with decreasing 7,
because the mean difference in redundancy before and
after mutation of a gene pair with redundancy r is
(1 —4)r. At some value of ¥, the selective pressure
increasing redundancy and the mutational pressure
decreasing redundancy will exactly balance and 7 will
cease to change,

For constant mutation variance, éqn 5b simplifies to

GaToo + X1

Yoo

= ®)
Neglecting central moments of higher than second order
in r yields 13 = Foo(3r2 — 272} (note that f; (r ~FFp(r)
dr — Qas k — oo), and thus

L= 0, + BT - 27, (9)

Ta
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The two equations in two variables eqns 3a and 9 can be
solved for 7. yielding

- A
o= x/atr':“ifﬁ Ho

The approximations leading to eqn 10 are only sensible
for intermediate values of 4 and a,,, i.e. values for which
oo I8 sufficiently far away from the boundary v = 1. This
is not only because p,.(r) is likely to be skewed close to
the boundary, but also because if Ffo = T — ¢ (e € 1),
then 72, — (F.)" < ¢ and as a consequence 62, needs to be
of order e as well. The pole of eqn 10at A = 1 reflects the
fact that egn 10 is valid only for a limited parameter
range.

Because both 7, and 72, are uniquely specified, 2
distribution with mean eqn 10 is the only possible
equilibrium distribution in the interior of {0, 1). This
distribution is also stable to small perturbations in its first
two maments, as is shown in the appendix. Distributions
at either boundary, é(1 — r) or 8(r), are no candidates for
(stable} equilibria for 0 < d< 1. §(1 —r) is not an
equilibrium distribution, as can be seen from substituting
it into the right-hand side of eqn 3b. §(r), on the other
hand, is an equilibrium distribution, but it is not stable, as
is shown in the appendix.

If g, is much smaller than I ~ A {(an upper bound for
the mean mutational change in redundancy of any
individual), then insufficient variation will be generated
to drive the selection process. 7 will ‘ratchet’ towards
zero. On the eother hand, the efiect of selection will be
less obvious if o), is very large, e.g. if large values of r are
created from small values by mutation alone, For these
reasons, it is sensible to scale #,, in units of 1 — 4. More
precisely, to validate the accuracy of eqn 10 by compaz-
ing it with the result of Monte Carlo simulations of the
underlying mutation-selection process, @, = ¢{1 — 1) will
be used, where ¢ is some real number in (0, 1), Equation

10 then becomes
" Fl
o = O STFT (1)

The example in Fig. 2 shows that eqn 11 agrees well with
the result of Monte-Carlo simulations over a range of
mutation variances (values of ¢), and both for slow
(A = 0.9) and fast (1 = 0.5) mutational decay of re-
dundancy.

In summary, if mutations diversify gene functions (i.e.
if 4 < 1), the amount of variation in redundancy gener-
ated by mutations determines whether significant
amounts of redundancy can be maintained by natural
selection.. If mutation does not have an intrinsic tendency
to diversify the functions of two genes (le. if 2 = 1),
natural selection drives the population to a situation of
complete redundancy for all genes. The mutation rate
itself, bowever, does not influence equilibrium mean
redundancy.
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Flg. 2 Mean redundancy in mutation-selection equilibriunu. Shown
are the analytical prediction {eqn 11) for equillbrium redundancy
(dashed line}, as well as results of Monte-Carlo simulations {dots} of
the underlying selection-mutation process. The length of each bar
corresponds (o one standard deviatlon of redundancy. (8} £ = 0.5;
{b) A = 0.9, Simulations were carried out as described in the
appendix. The deviation of the means for large values of m, in (a) is
due to a significani deviatlon of the simulated distribution of
mutation effects from a Gaussian distribution for large &, Further
simulation parameters: N = 10%, p=1,F = L.

For reasons of tractability, it is assumed throughout
this paper that deleterious mutations are lethal, Relaxing
this assumption would result in a much more involved
formalism. This is because the coevoly.don of redundancy
and genetic load can become quite complex, as'is evident
from related models on the evolution of ploidy (Bengts-
son, 1992; Otto & Goldstein, 1992) and reproductive
isolation (Bengtsson & Christiansen, 1983; Turelli & Orr,
1995; Orr & Turelli, 1996; Gavrilets & Gravner, 1997).
Although a more elaborate treatment of this issue will be
deferred to a forthcoming publication, it shall be briefly
mentioned here that the assumption of lethality is not
likely to affect the reported results qualitatively. Figure 3
shows mean redundancy in mutation-selection eguilib-
riumn, as obtained by Monte-Carlo simulations of the
above model, with the exception that non-neutral
mutations are not lethal, but reduce fitness, on average,

by a factor i, < 1, as detailed in the figure legend. The
case where all non-neutral mutations are lethal is shown
as A, = 0. The figure demonstrates that mean equilib-
rium redundancy decreases only modestly as the effects
of non-neutral mutations become weaker.

In the moedel eqn 2, redundancy is ‘symmetric’, i.e, the
probability that a mutation has no phenotypic effect does
not depend on which of two genes is mutated. However,
mamerous examples in the experimental literature show
that this is not necessarily the case (Lundgren et al., 1991;
Li & Noli, 1994a,b; Cadigan et al., 1994; Gonzdles-Gaitdn et
al., 1994; Hanks et al., 1995). The effects of loss-of-
function mutations in one of two partially redundant
genes may very well depend on which gene is muzated.
Such observations call for an extension of the above
model, in which each gene pair (G, G2} is characterized by
two values of redundancy (1, r1). r;is the probability that

0.6

0.51

Q.47

Mean Equilibrizum Redundancy

0 ol

02 03 04 05 06 07 08 09

A

W

Fig. 3 Mean equilibrium redundancy depends on fitness effects of
mutations. The figure shows mean (bars) and 1/2 standard devlation
(error bars) of redundancy in mutation-~selection equilibrium, as
esiimated from Monte-Carlo simulations of the symmelric two-gene
model, Impertantly, non-reutral mutations are not lethal here, but
they reduce fitness on average by a factor 4, (0 < 4, < 1). More
specifically, if an individual with fitness w is affected by o non-
neutral matation, the expected fitness after mutation is

Sy wh g {w lwidw* = Ayw (0 < Ay < 1), 2 formalistn completely
analogeus to that used for r in eqn 1. The probability distribution
e (w*iw} is a Gaussian with mean Aew, and standard deviation

@, = 0.05. Boundary effects are weated for w exactly as described for
r in the appendix. The closer A, i5 to one, the smaller the average
deleterious effect of a mutation. 2,, = 0 corresponds to the limiting
case of lethal mutations discussed threughout the rest of the paper.
Natice the only moderaie decrease in equilibrium redundancy as the
mutational effect is reduced from the maximal value 4, = 0.
Purther simulation parameters: A= 0.7, ¢,, =015, N

=5%x10), u=1,F=1.
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the organism survives if G; is mutated. Such a phenotyp-
teally neutral mutation is assumed to change r;in the same
way as in the simpler model. Because this concept
generalizes in a straightforward way to a model for
redundancy among # genes, an x-gene model is given
here.

Denote as r; the redundancy of gene i
(ie{l,...,n},n < ), which is the probability that
an organism survives if gene { undergoes a mutation. Let
pt) =py(r1,...,my) be the joint probability density
describing the distribution of individuat redundancies in
the population at time ¢ Denote as r‘f‘ r’frﬁ, the
moments [, r’f‘r’f - rhip{ridr where the subscript #
under the integral iz a symbol for the domain of
integration, the »-fold Cartesian product of the interval
(0, 1), pis{ry) = I(‘l"l) pe(r)ILdry is the (marginal) density
of redundancy at locus i. Analogously to eqn 2, the joint
probability distribution evolves as

pisi(r) = (1/8) [(1 ~ nu)p(r)

I ]

+ﬂZf zp!(ria---:rj—lazaf:f-l-h--‘,rﬂ)m(r}'lz)dz [ (12)
j=1 48

where

i
Si=(L-np}+u) 7

=1

m(riz)dr; is the probability that a mutation changes the
redundancy of the mutated gene from z to r;. For the
marginal distributions, one finds

1
pri{rs) = (1/S;) [(1 -~ npulpsy + H( A zpis(z)m(ri|z)dz

1
+Z£ ZP;‘J,;(?‘:,Z)dZ)]. (13)

J#

Here, pi;ri,2) stands for f(”_zlp;(rl,...,rj_;,z,rw,...,
?u)dgpydre. Consider now the important special case
where all loci are in linkage eguilibrium, i.e. where
pe(ry =TI, piy(ry). Then the marginal distributions in
mutation-selection equilibrium p; are the solutions of
the equation

Picolti) = (1/Sc0) [(1 — 1)pie(ri)+ g(fé iea(Z)m(rij2)dz

+ P (?’,‘) Zﬁ.oo)] . (14)

J#

Multiplying both sides by S, shows that this is equiva-
lent to

) = f{}] ZPn‘,w(_Z)m(rdz)dzl

Pio(ri 7 (15)
i,00
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Thus, the marginal equilibrium distributions are not only
independent of the mutation rate, they also take exactly
the same form as those in the simpler symmetric
redundancy model for two lod. In fact, any equilibrium
distribution po(r} is independent of the mutation rate,
i.e. even if it is not assumed that the population is in
linkage equilibrium.

Wouid an assurnption of negligible linkage disequilib-
rium be justified? For reasons of tractability, only the
two-gene model, i.e. eqn 12 for 7= 2, will be studied.
One can show that

Tient = (1/S)](1 ~ 20073, + 047, + it 1= 1,2
(16)

and
Fitzael = (1/8) [(1 — 2P P2y + pArira, + M?‘l_fir]-

Using Cov,(ry, r2) = P17, — F1./F2, as a measure of linkage
disequilibrivrm, it follows that

Covyyi(r,ra) = (I/Sf)[(l — au)Covi(ri, ra)
+ AuCov,(rE, r) + lpCov(rl,ri)I. (7

In deriving eqn 17, all terms containing p? were
neglected. If redundancies at the two loci are stochasti-
cally independent in generation £ then all covariance
terms on the right-hand side of eqn 17 are equal 1o zero,
and linkage disequilibrium will be zero in generation
t+ 1. Thus, selection in and by itself does not cause
linkage disequilibrium to deviate from zero. However,
egn 17 does not permit the conclusion that linkage
disequilibriurm will return to zero if it is different from
zera. To explore whether systematic deviations from
linkage equilibrium occur during evolution, Monte Carlo
simulations of the selection-mutation process for a
system of two loci were carried out. No recombination
was allowed between loci, so that the reduction of
disequilibrium by recombination would not obscure any
increase in disequilibrium caused by selection {or drift).
The qualitative result of these sirnulations was indepen-
dent of the particular parameter values chosen. A
representative example is shown in Fig. 4. The upper
panel shows the evolution of mean redundancy for two
tightly linked loci, and the lower panel shows the
evolution of the Pearson product-moment correlation
coefficient (Sokal & Rohlf, 1981) of r) and ry in the same
population: and over the same time interval. While
substantial excursions from equilibrivin occur in both
directions around zero, disequilibrium. does not show any
obvious systematic deviations from zero. (Mean correla-
tion coeffcient over the 3000 penerations shown:
~3.4 x 107%; standard deviation: 6.4 x 1072,
Analogous simulations for a larger number of genes
sugpest that even in the absence of recombination,
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Fig. 4 Evolution of linkage disequilibrium under mutation and
selection. Shown is the result of a Monte-Carlo simulation of the
evolution of redundancy for an organism with twao tightly linked
genes, i.¢, in the absence of recombination. (a} The evolution of
mean population redundancy for gene 1 and gene 2 by a solid and a
dashed line, respectively {Fo = I for both genes). (b) The evolution of
linkage disequilibrium for the two genes shown in {a). The measure
of disequilibrium is the Pearson product-moment correlation coef-
ficient (Sokal & Rohlf, 1981) between redundancy at the two lod.
Despite the absence of recombination, linkage disequilibrium shows
no apparent systematic deviation from zero (mean over 3000
generations: —3.4 % 10~%; standard deviation: 6.4 x 1072}, Simula-
tion parameters: N = 10%, p = 5% 1072, 1=0.7, o = 0.15,

equilibrium redundancy 7y attained in a system of n genes
has a value that is statistically indistinguishable from that
predicted by eqn 11 for the simpler symmetric model.
This is exemplified by Fig. 5, which shows population
means of redundancy in mutation-selection balance
averaged over the number of loci, It suggests that the
polygenic model behaves much like » independent
symmetric two-gene models. It will thus be the simpler
two-gene model whose behaviour under the influence of
genetic drift will be studied more closely in the next
section.

Genetlc drift

In a population with mean redundancy ¥ a fraction
2p(1 —7) of individuals is subject to deleterious muta-

Mean Redundancy per Gene

D
1

4 5 6 7 g 9 10
No. of Genes

Fig, 5 Mean redundancy per gene in mutation-selection equilibri-
um. Results of Monte-Carlo simulations af the evolution of redun-
dancy for a varying number of tightly linked genes under the
infiuence of mutation and selectian, For each number of lod given
on the abcissa, the ordinate curresponds Lo the average mean
population redungdancy over all loci in mutation-sclection equllib-
rium. Lengshs of error bars correspond to one slandard deviation of
the mean over locl, Despite the absence of recombination, mean
redundancy per locus is statistically indistinguishable from the
predicted eguilibdum redundancy Fo. = 0.28 for the ‘symmetric’
two-locus model. Simulation parameters: N = 10%, = 1072,

A =05, gy = 0.05.

tions. This quantity could be viewed as a measure of the
genetic load (Crow & Kimura, 1970, p. 298) due to
incomplete redundancy. It is of the order of the mutation
rate, i.¢. very small, suggesting that the selection process
outlined above will only be effective in very large
populations. The subject of this section is to analyse the
evolution of redundancy for small populations. The key
parameter in this regard is Nu or Ny, where N, is the
effective population size. It will be varied through
changes in u which is possible here because the
distribution. of zredundancy in mutation-selection equi-
librium is independent of u Instead of studying the
evolution of mean redundancy in one population, one
has to study the evolution of mean redundancy in an
infinite ensemble of populations (Crow & Kimura, 1970).
This ensemble mean of individual population means at
time ¢ is denoted by {r). As No — 00,{f') = Foo.

First it will be studied how redundancy evolves if
Napt <€ 1 and if all individuals initially have redundancy
equal to one {{ro) = 1), e.g. shortly after a gene dupli-
cation has become fixed in the population. If Nou is smali,
the model shares important features with an infinite
allele model of neutral alleles {Crow & Kimura, 1970).
The population is monomorphic for redundancy most of
the time. However, on average every 1/u generations
mutations will occur that sweep to fixation in 2N,
generations (on average), sufficiently fast that their
spreading will not be appreciably slowed by the few
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mutations that may occur during the process. As an
approximation for the dynamics of {r,} the difference
equation

{re1) = Azﬂ(n)/[{l—2n}+2ﬂ(n)](n) (18a)

is used. It can be viewed as having two components that
correspond 1o two different processes. The first cornpo-
nent, represented by (r() = A%{r,) would in and of
itself cause an exponential ‘decay’ of redundancy, This
component reflects the reduction of (r;) through muta-
tions whose effects are distributed as given by eqn 1.
However, for {r) < 1, the mutation rate per two genes,
2y, will overestimate the rate at which mutations occur
that might spread in the population. The reason is that if
an individual with redundancy r undergoes a mutation,
only a fraction of r of the mutants will be phenotypically
neutral. The remaining fraction, 1 — r, will die. This leads
to an ‘effective’ rate of (neutral) mutations, represented
by 2p(r)/[(1 -~ 24} + 2u(r)] in eqn 18a. It is the contri-
bution to generation t+ 1 of individuals that were
mutated in generation ¢ and that survived. This fraction
decreases as the mean ensemble redundancy decreases,
such that the decay of redundancy is much slower than
exponential for {r} < 1. A number of implicit simplifying
assumptions are hidden in eqn 18a, e.g. that properties
of the distribution of mutation effects other than eqn 1
are irrelevant to the evolution of {r}, that no higher-
order ensemble moments are necessary to describe
the evolution of (r), and that the ensembie average of
the effective {population) mutation rate is given by the
above form.
For reasons of tractability, the differential equation

d(rf) In ;{ 2#(?‘:)2

dt (1 -2 + 26(r)’

which is analogous to eqn 18a, will be analysed. The unit
of time is identical to one generation of the discrete time

(18b)

o
2o

Fig. 6 Evelution of mean ensemble redundancy
under the influence of genetic drift, The upper solid
line shaws the analyteal prediction (egn 18b) for the
evolwtion of the ensemble mean redundancy () for
A =05 and p=5 x 10°% Equation 18h was solved
numerically, The lowey solid line shows the predicied
evolution of {r) for the same parameters if the decay
of redundancy was purely exponential, as explained
in the lext. Dots represent the results of Monte-Carlo
simufations of the underlying process with & = 102
(ie. N =35 % 10", and o, = 0.05, More precisely,
each dot Is the mean over the mean population

s o
L% o

Mean Ensemble Redundancy
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model. Let ; denote the time necessary for {r} to decay
from one to 1/2%, Then

1 1-2 . .
Lot — e = (“E—A) [(m2u ”)2* +ln2] x 2%,

Thus, the ‘half-life’ of redundancy increases with de-
creasing ({r). Figure 6 shows a comparison of the
analytical prediction eqn 18b and of a series of stochastic
simulations for N.u = Np=10"% The upper solid line
shows the analytical prediction (18b) for 4 = 0.5 and
# =35 % 107°. The lower solid line shows, for comparison,
a purely exponential decay for the same parameters
and i. The dots represent the results of Monte-Carlo
simulations. They are the averages over mean population
redundancies 7 of 20 independent population simula-
tions, demonstrating that eqn 18b is in qualitative
agreement with the stochastic simulations.

Thus, redundancy decays to (ry} = 0 under the influ-
ence of genetic drift if N.p < 1, albeit increasingly slowly
for large 1. On the other hand, in very large populations
{Nep > 1}, selection-mutation balance causes mean en-
semble redundancy to attain the fnite equilibrium
{rx) = T given by eqn 11, The question thus arises of
how large N.u has to be for the decay of redundancy tp
be appreciably slowed or reversed by selection. This
question was addressed by stochastic simulations. In such
a numerical analysis, initial conditions {ry) > . are not
likely to be very informative, because both selection and
drift will reduce the ensemble mean. But if {ro} < o, the
influence of drift will tend to decrease (r), whereas the
influence of selection will cause an increase of (r).
Because of the large computational cost required to
analyse the evolution of ensernble means, only a crude
approach was taken, in which several papulations of size
n {(an ensemble sample) were initialized at a mean
redundancy of ¥, for sorne value of the parameters A and
%, The evolution of these populations was then simu-

redundancies of 20 Independent population shnula-
Llions at the respective time point on the abscissa,
Length of lines crossing the dots correspond to one
standard deviation over 20 populations.
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lated for 10" generations. For a given mutation rate, jt
(eqn 18b) provides an estimate of how much redundancy
would decline in 10* generations if the evolutionary
dynamics was dominated by drift, and this estimate can
be used to assess the effect of selection. This approach
does not yield information regarding an equilibrivm
ensemble mean (r), but it provides an estimate for the
influence of selection relative to drift. Figure 7 shows
examples for L = 0.5and 1 = 0.9, where values for oy,
were chosen such that the respective mutation-selection
equilibria were of similar magnitude in the two cases,
Populations were initialized with uniform redundancy
close to the mutation-selection equilibrium indicated by
the horizontal line in both panels. For small values of
N.p — Ng, {r} declines at a rate similar to that predicted
for N < 1. But for Ng = 2, selection already slows the
decay of redundancy considerably, and for Nu > 50, the

ensernblie means do not decrease appreciably from the
initial condition. Because the decrease of redundancy per
mutation event is less for A = 0.9 than for A = 0.5, the
change in redundancy is in general slower for 2 = 0.9.
The neutral theory predicts that the expected number of
alleles in a population is 2Nex + 1. Not all mutations are
neutral here, but the fact that the decay of redundancy is
slowed by selection for values of Ny that are of the order
of unity implies that selection already has an effect if
merely two alleles are present in the population.

Does it take equally long for redundancy to reach an
intermediate value of 7 if a population starts from high
rather than from low initial redundancy? The following
approach was faken to address this question. For a given
Np, 20 populations were initialized at values of high
{fo = 0.99) redundancy, and the time was recorded
when individual population means 7, first had reached

Fig. 7 Evolution of mean ensemble redundancy under the
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Selection and Drift
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Ensemble Redundancy at t

over mean population redundancies of 20 independent
population simulations after t = 10* generations.

Simulation parameters: (a)

N=10" A=05, 6, =0.25,5x 107 < p < 0.128; ()

N =10, 1= 0.9, gy = 0.05, 5% 107 < p < 0.128, In both
4 panels, all populations within an ensemble were started with
3 the same inlijal condition Fy close to the respective muiation-
selection equilibrium. In (a) 7y = 0.26, in (b) Fo = 0.28.

1 Leagths of error bars correspond 10 one standard errar aver
: the 20 population simulations. Eight bars show, for compar-
ison, the analytical prediction (eqn 18b) for the same

.4 mutation rates as used for the neighbouring dark bars, but
128 agsuming that Np < 1. Both panels show that selection siarts

to be effective for Np 2 1. Note that N = N; in the simulations
carried out here (see also appendix).
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Table I Time {generations x 10%) untit crossing the mutation-seleciion equilibrium egn 11 lor different initial values of r, &, = (1 ~ )42, and
N = 1P, dividual cneries represent mean and one standard deviarlon over 20 independent population simulations, except where noted
otherwise. A simulation was stopped if the mutation-selection equilibrium was not reached after 5 x 107 generations. Initial values of r were

the same for all individuals in a population.

Np=25 Ny = 50 Ny =100

m =058 fo = 001 o= 088 ra=0.01 n=0849 p = 0.01
A=085 3.04 + 0.64 > 45,78 {14 1.64 + 0,32 > 28.3 (7Y 083 013 =B.7 (1)
A=075 0.87 + 0.35 > 106 (3 042 £0.14 1.66 + 0.B9 0.26 + 0.09 0.6 0.2
i=055 0.36 + 0,12 > 8,97 (2) 0.3 £ .11 1.02 £ 0.6 a.17 £ 0,07 035 £ 0.12

* In these simulations the predicted mutation-selection equilibrium had not been crossed after 5 x 167 generations in ane or more of the 20
independent population simulations, a4 indicated by the number in parentheses. The averages given here include the number of generalions
untll the population mean first crossed the deteyministlc equilibrium for those populations that crossed equilibrium, and the value 5 x 107 Jor
cach popuiation that did not cross equilibrium. The symbol '>" indicates that the average crossing rime to equilibrium is greater than the value

shown.

a value lower than that given by the mutation-selection
equilibrium eqn 11. Conversely, the time was recorded at
which 7, first exceeded the mutation-selection equilibri-
um in each of 20 populations initlalized at low redun-
dancy (Fg = 0.01). These ‘crossing times’ averaged over
the 20 populations are given in Table 1 for different
values of Nu. For each 4, 6, values were chosen such that
the deterministic equilibria were of comparable magni-
tude (between 0.25 and 0.3). For a given Ny, crossing
times increase with decreasing 4, which is not surprising
for a = 0.99. For Fy = 0.01 this holds because of the
larger g, emphasizing the important role of mutational
variation in the selection process for increased redun-
dancy. More importantly, although the chosen mutation-
selection equilibria were closerto r = Othantor = 1, it
took longer to cross them if redundancy was initially low.
In addision, it took much longer (a factor 10-20) to reach
Fx. from low initial redundancy if Nu was small than if it
was large. For small N selection not only has to
overcome the effects of mutation, but also the effects of
genetic drift for initially low redundancy.

Discussion

In the model considered here, redundancy is canceptu-
alized as some measure of overlap in two genes' biclog-
ical function. This measure will depend on the types of
genes and blological contexts considered. For example, in
the case of two genes with similar biochemica) functions,
the extent of overlap in their spatiotemporal expression
patiern throughout organismal development can serve as
a measure of redundancy. The greater this overlap, the
more redundantly specified is the biclogical function of
these genes. The model is most general in the sense that
it does not restrict itself to a particular measture of
redundancy.

Two roles of natural selection in the evolution of
redundancy can be distinguished. First, natural selection
will lead to the stable maintenance of partial redundancy,
i.e. overlapping functions between genes, provided that
(i) mutation generates a sufficient amount of variation in
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redundancy and that (ii) population sizes are sulficiently
large (Nep > 1), Thus, genetic redundancy can increase
through the action of natural selection. This holds even
though mutations tend to reduce functional similarity
among gene products. Maoreover, the level of redundancy
maintatned in mutation-selection equilibrium is inde-
pendent of the mutatton rate. Selection cannot act on
fitness differences among arganisms carrying genes with
different degrees of redundancy, because such differences
do not exist. Rather, mutations in individuals carrying
genes with low redundancy produce larger numbers of
offspring with low fitness. Thus, individuals carrying
genes with high redundancy contribute more offspring 1o
subsequent generations than those with low redundan-
cy. The large population sizes required are unrealistic for
most vertebrates, but not for micro-organisms and
possibly some small invertebrates. The second role of
natural selection is independent of population size and of
the amount of variation generated by mutation. Selec-
tion will always slow the mutational ‘decay’ of redun-
dancy because It eliminates the deleterious mutations
invariably generated by genes with redundancy r < 1.
This is illustrated by the solid lines in Fig. 6, which
represent the expected ‘decay’ rate of redundancy by
mutational pressure alone (lower curve), as well as by
mutation and selective elimination of deleterious mu-
tants (upper curve). Clearly, the decay rate is much lower
if selection acts, despite the very small population sizes
(Nept € 1).

In this model, selection among two or multiple
partially redundant genes does not lead to a build-up of
linkage disequilibrium, D, in redundancy. Linkage rela-
tions among genes are therefore not likely 10 {nfluence
the evolution of redundancy, It means also that the
fitness effect of a mutation in one redundant gene is nat
necessarily similar (D > 0) or dissimilar (D < 0) 1o that of
2 mutation I other genes. Clearly, the available exper-
imental data do not provide the level of resolution
necessary to corroborate this statement, However, one
might naively assume that redundancy is often ‘sym-
metric’ between genes, i.e. that the effect of a (loss-of-
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function) mutation among partially redundant genes is
similar. As a corollary of the theoretical result obtained
here, such symmetry is not to be expected, because it
would imply large amounts of linkage disequilibrium.
This is consistent with available experimental evidence,
Most often, loss-of-function mutations in partially re-
dundant gene pairs have different effects depending on
which gene was mutated (Lundgren et al,, 1991; Cadigan
et al, 1994; Gonzédles-Gaitdn er al, 1994; Li & Noll,
1994a,b; Hanks ef al.,, 1995).

An important question regarding the evolution of
redundancy is whether genes with originally dissimilar
functions can evolve (converge) towards partial redun-
dancy. In this case, selection for increased redundancy
has to overcome the influence of both genetic drift and
mutations. Not only is an increase of redundancy
through selection only possible for large populations
{Ny), this increase will be very slow if Nu is not
substantially greater than one, e.g. Nu > 100, as shown
by Table 1. For example, il Nu= 10, it may take, on
average, 15 times longer for a populaiion to cross a
specified threshold in redundancy when starting from
fow redundancy, than when starting from high redun-
dancy {e.g. after a gene duplication event). Moteover, in
this case mean redundancy in a population will not reach
a quasi-stable equilibrium, but will constantly change
through the strong influence of genetic drift. It thus
seems that observed redundancy will most often be the
result of funciional diversification after gene duplication
events, which is slowed or ultimately stopped by the
action of natural selection, and more rarely the result of
selection for de movo redundancy.

The model, as presented here, contains many simpli-
fications that were mainly introduced to illustrate the
relevant evolutionary mechanisims most clearly. None of
these simplifications is likely to affect any of the quali-
tative conclusions made here. The assumptions of hap-
loidy and of lethality of non-neutral mutations would
lead only to a reduction in the advantage of redundancy.
The extent of this reduction would depend on factors
such as the degree of dominance, and the average fitness
effect of mutations. Effects of relaxing these assurnptions
may be quite modest, as suggested by the numerical
results presented in Fig. 3, in which the assumption of
lethality was relaxed. A more detaled analysis of the
potentially complicated coevelution between redundan-
cy and genetic load will be presented elsewhere. The
implicit assumption that effectively all non-neutral mu-
tations are deleterious is also inconsequential. Assume
that a selectively advantageous mutant occurs in a gene
with redundancy rp. I this mutant goes to fixation, the
evolution of r, as described by eq 2, will continue with
initial condition po(r) = &(r — rp). Since redundancy in
mutation-selection equilibrium is independent of initial
redunidancy, the population will approach the equilibri-
um starting from ro.

There is onc assumption that is unrealistic but probably
unavoldable if any level of generality of the model is to
be maintained. It {5 assumed that a mutational change in
redundancy at one Jocns does not affect redundancy at
other loci. Envisage, [or example, the overlap in the
spatiotemporal expression pattern of two genes express-
ing identical products as a measure of functional redun-
dancy, and assume that mutatiens in each gene change
only the spatiotemporal extent of the expression pattern.
It is clear that a phenotypically neutral mutation in one
locus may well affect redundancy at both loci. To relax
this assumption, one would probably need a biochemi-
cally based model of redundancy and very specific
assumptions about mutational effects. One result of this
assumption is that redundancy evolves independently at
each of » locl. Relaxing it is likely to change the
importance of selection for increased redundancy, in
that selection might become effective ar smaller values of
Ne, depending on the number of genes invalved.

The model uses a concepticnally simple, universal
measure of redundancy involving a reduction in the rate
of phenotypically neutral mutations. This simplicity is
unlikely to translate into mechanistic explanations of
redundancy. The wide array of biochemical functions
that can be redundantly specified suggests that no
universal measure of overlap or similarity among gene
fanctions will exist. Certainly not all cases will be
reducible to similarity among blochemical functions of
gene products (Kataoka et 4., 1984; Basson ef al., 1986).
Differences in both spatial and temporal expression
patterns will often contribute to partial redundancy.
The striking example of the transcription factor genes
paired, gooseberry and gooseberry neuro in Drosophila dem-
anstrates that functionally identical gene products can
lack complete redundancy because they lack identical cis-
regulatory sequences {Li & Noll, 1994a,b). And even
assuming that a particular notion of redundancy can be
agreed upon for a particular biological question, a much
deeper problem: arises. It lies in the fact that redundancy
resuits from the interaction of two or more genes, and
that it cannot be reduced to properties of individual
genes, To estimate redundancy, one has to know as a
reference point the rate of {deleterious or lethal) muta-
tions of that gene in the absence of its redundant
partrers, This would be very difficult for reasons aside
from practical problems of assessing mutation rates (Hartl
& Clark, 1989). Because one is usually confronted with
partial redundancy, one cannot study the individual gene
in isolation. Part of the biclogical function has to be
provided by another gene. A remedy, although problems-
atic, would consist in an evolutionary approach identi-
fying and studying taxa closely related to the one under
consideration in which the respective gene is not
partially redundant {e.g. in which a gene duplication
has not occurred). If the gene has a similar biological
function in the related taxon, then that taxon might
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provide the necessary reference point. The clusters of
homeotic genes in chordates serve as an example.
Multiple gene and clusier duplications occurred in this
case (Carroll, 1995), which may have led to examples of
partial redundancy (Condie & Capecchi, 1995). The
genes seem to be used in a similar functional context,
Le. axial determination, throughout the chordates, and a
relerence taxon has been found that has at most one
copy of each genc in the cluster (Amphioxus; Garcia-
Ferndndez & Holland, 1994; Carroll, 1995). However,
one is confronted with the deep problem of whether gene
functions in different taxa can be meaningfully called
homologous, and the greater the evolutionary distance
between taxa, the more problematic such comparisons
become. This holds even if the biochemical functions of
the respective genes are well preserved, such as may be
the case with the mouse Engrailed genes En-I and Bn-2
(Hanks et al, 1995) and their unique Drosophila coun-
terpart en. Basic body plan features of these organisms
cannot be homologized, and one can therefore not
meaningfully compare degrees of redundancy.

Another empirical question concerns the amount af
variation in redundancy generated by mutation, and,
more precisely, whether mutation generates variants
with increased redundancy. Only if this is the case would
selection be able 1o increase mean redundancy. {In terms
of the model, this translates into the question of whether
a,, is of the same order of magnitude 1 — 4.) The case of
increasing functional similarity among genes is of special
interest here. Relevant evidence comes from the evolu-
tion of (nonredundant) genes in different taxa. Func-
tional convergence among genes must have occurred in
numerous cases {e.g. haemocyanin and haemoglobin},
including examples of directed homoplasy, where not
only functions but alse protein sequences may have
converged (Stewart ef af., 1987; Swanson et af., 1991).
This suggests that mutations provide the variants neces-
sary for functional convergence. Moreover, many
redundant genes are closely linked, and in this case gene
conversion may considerably increase structural and, by
correlation, functional similarity. Thus, there is no reason
Lo expect that mutation will always lead to decreased
redundancy, although it is likely to do so on average.

The results presented here are a special case of a more
general principle, namely that nonlinear (epistatic) gene
interactions can profoundly influence the extent to
which mutational effects propagate through the epige-
netic system. Recent studies on the evolution of genetic
canalization (A. Wagner, 1996a,b; G. P. Wagner ¢ al,
1996) have shown that many mutations that are not
neutral on the molecular level may be neutral on the
phenotypic level because their effects are ‘absorbed’ by
the epigenetic system. Moreover, natural selection can
increase the ability of the epigenetic system to act as a
buffer against mutational effects. Redundancy is a special
case of an epistatic interaction among two or more genes,
and selection can affect redundancy among these genes.
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A developmental pathway with many partially redun-
dant genes might be more canalized than one with few
such genes. This important role of epigenctic interactions
also sheds a different light on the nature of neutral
mutations. Phenotypically neutral mutations need not
leave the biochemical function of a gene product
unchanged. Instead, they may be neutral because their
effects are buffered by the epigenetic systemn, such as in
the case of partial redundancy, It remains to be seen what
fraction of phenotypically neutral genetic variation is
‘molecularly neutral” and what fraction might be ‘epige-
netically neutral’.
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Appendix

Stabliity analysls

To study the stability of the boundary solution p(r) = §(r)
for 0 <A<1, consider a small perturbation of this
distribution, i.e. a p,(r) with 7 € 1, rZ & 1. 1f these two
morments are sufficiently small, rZ | > #?, because
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207,03, + (34 = 1)77 - 20°F]

= (X = 2p) + 2y47,

It follows then that

in[ ] + 0 -2+ ) - 7]
(1= 4p) + 201 — 207, + 2pr?

fipa—f = >0,
because 7; can be made arbitrarily small. Thus, both 7 and
¥ increase in the vicinity of the boundary solution §(r).

Consider now the stability of the solutions p(r) =
8(r—n) for 0 < rg < 1, and for 4 = L. For any given r,,
the first and second moments of d(r — ry) are r, and 72,
respectively, Now perturd §(r - ry) via these moments,
ie. consider a pfr) with #=rn+ec and

7 =18+ (D <8 <« 1). Using eqn 3a, one obtains

o (=20 + ) + 2107 +9)
A (D77 o YD B

It follows that

2u(8 = 2erg — €2) >0
(1-2u)+2p{ro+¢) " 7

-fr+1 —-F=

because ¢ can be made arbitrarily small. Thus, the
solution 8(r — ry) is not stable for any rp < 1,

To study the stability propertics of the interior equi-
librium in eqn 10, define, for notational convenience, the
variables x =T,y =1,  and  w:={l-2p)/2u
Throughout, 0 <A< 1. Using egn 1, fn' (r* = Ar)?
m{rr)dr* = %, and _}"ﬂ1 (r-FPp(r)dr=~0, as in the
main text, the following dynamical system in x, and y,
follows from eqn 2:

Xpg] == mmmeer——"— (Ala)

= wy; + O',;:i.Xr “+ l2x1(3y,. - fo)

Yret P (Alb}
The form
— - Ay — X,z
Axp =X — % = oy
@2 x4+ A2 (3 — 2x) — x
Ay =y —y = wXt 3y 1) = X

@+ X

shows that the mutation rate enters the rate of change in
both variables only through the muliiplicative factor
w +x > 0. Thus, y determines only the rate, but not the
direction, of change in the phase space of the two-
dimenstonal dynamical system {eqn Al). Therefore, for
the stability analysis of the interior equilibrium (eqn 10),
the set of equations

(A2a)

Xegp =~
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Vi = 0'5, + /12<3JJ: - ZXIZ) (A2b)

can be used. The Jacobian of eqn A2 is

o f Y L x
M'"}'(—Mx: “f)_

Using eqn 6, i.e. y/x* = 1/l at equilibrium, the eigen-
values y, , at equilibrium are given by

V=3 PP -14VOF TP 16R11] (AY

An examination of eqn A3 shows that both eigenvalues
are real and that

12/ <1 Vie(o,1). (Ad4)

Thus, eqn 10 is tocally stable (e.g. Hofbauer & Sigmund,
1988, p. 55).

Numerical methods

This section outlines the methods used for carrying out
the Monte-Carlo simulations used to illustrate and
validate the analytical predictions of the model.
A population of » individuals {I,...,Iy} each with
genes  is represented by (i) »  arTays Ry =
(Ters ..o rw) (k€ {1,...,N}), where each entry ry, is
restricted to the interval (0, 1), and corresponds to the
redundancy of gene m in individual /, and (i) an array
{(wi,...,wy) whose entries wy € {0,1} represent the
fitness of individual Iy, All ry's are set to the same value
at the beginning of a simulation,

A simulated evolution process consisted in the itera-
tion of two steps in the following order.

1. Muitation

The following procedure was carried out for each entry
t:l Sk N1 £j<n starting with r;;. First, a uni-
formly distributed pseudo-random variate v, € (0,1) was
generated. If v > g, redundancy ry and fitness w, were
leit unchanged. If v < u, another uniform random
variate v; € (0,1) was generated, If v; > ry, then w,
was set to zero, if it was not already equal to zero, If
vy < 1y thent & Gaussian pseudo-random deviate v with
mean Ary and variance o} was generated. (o was
parameterized by a variable ¢ such that oy, = ¢(1 — 1).) If
0 <wv <1, then ry was set to the value r,:jmw, It
vy < 0,7y was set to r;,f- =0, and if w3 > 1,7, was set to
rg = 1. Random number generators used for uniform
and Gaussian deviates were based on the routines ‘ranl’
and ‘gasdev’ from Press et al. (1992), ry follows a
probability distribution with density &(r) ffm glx)dx
+8(r5) + 6(1 — ryy) 77 9(x)dx, where 0 < <1, and
g(x) Is the density of a Gaussian distribution with the
above parameters. For ry close to either boundary, this
distribution will deviate from assumptions made in the
text, e.g. eqn 1. However, for most of the parameter
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rhy = (1 = 2} + 2317,

It follows then that
2047, [ﬁ - ;,f] + {1 —2p) {l(;z;: + ;F) - Zﬁ]
(1 —4p) + 201 — 2p)F, + 2pr2

flpp—-F= >0,
because 7; can be made arbitrarily small. Thus, both Fand
¥ increase in the vicinity of the boundary solution §(r).

Consider now the stability of the solutions p(r) =
d(r —ny) for 0 < rg < 1, and for 4 = 1. Por any given r,.
the first and second morments of §(r — ry) are #, and 13,
respectively. Now perturb §(r - rq) via these moments,
ie. consider a pfr) with #F=ri+e and
1 =rf +6(0 <€ 8 < 1). Using eqn 3a, one obtains

(=20 + 9 + 20k 4 )
AR CR 77 Prap YV A R

It follows that

2u(d — 2ery — €2) 50
(1-2) +2u(ro+¢) "

-fr+1 —F=

because ¢ can be made arbitrarily small. Thus, the
solution 6(r — ry) is not stable for any rp < 1.

To study the stability properties of the interior equi-
librium in eqn 10, define, for notational convenience, the
variables  x :=F,p=rf  and  w:= {1 -2p)/2u
Throughout, 0 <A< 1. Using egn 1, fu' (= Ar)?
mir*r)dr = g2, and j}; (r=#Yp(r)dr=~0, as in the
main text, the following dynamical system in x, and y,
follows from eqn 2:

Xy 7 el (Ala)

- wy; + O’ﬁ,Xf - 112)(;(3}’1 - 2Xf2)

) Ib
Yrsr o+ x (Alb)
The form
_ _ M-
Axy =x01 % = @+ %
a2 x4 A2x {3y — 26 - x
Ay =y -y =-2 {30 - 2x) ~ o

w -+ X

shows that the mutation rate enters the rate of change in
both variables only through the muliiplicative factor
a +x > 0, Thus, ¢ determines only the rate, but not the
direction, of change in the phase space of the two-
dimensional dynamical system {eqn Al). Therefore, for
the stability analysis of the interior equilibrium {eqn 10),
the set of equations

(A2a)

Xig) = o
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Ver1 = 62 + 123y, — 2x2) {(A2b)

can be used. The Jacobian of eqn AZ is

— ~yfxt 1/
M'_l( —‘Hxi 34 )

Using eqn 6, ie. y/x* = 1/4 at equilibrium, the eigen-
values y, ; at equilibrium are given by

na=3 [P -1 VAF TIP TeR 11| (AY

An examination of eqn A3 shows that both eigenvalues
are real and that

[112] <1 ¥ie(0,1). (A4)

Thus, eqn 10 is locally stable (e.g. Hofbauer & Sigmund,
1988, p. 55).

Numerical methods

This section outlines the methods used for carrying out
the Monte-Cario simulations used to illustrate and
validate the analytical predictions of the model
A population of n individuals {I,...,Iy} each with »
genes  is  represented by () & arays Ry, =
(rery ... ) (k€ {1,...,N}), where each entry ry, is
resiricted to the interval (0, 1), and corresponds to the
redundancy of gene m in individual /, and (i) an array
(wi,...,wy) whose entries wy € {0,1} represent the
fitness of individual Ii. All r;'s are set to the same value
at the beginning of a simulation,

A simuolated evolution process consisted in the itera-
tlon of two steps in the following order.

1. Mutation

The foliowing procedure was carried out for each entry
ty,l k< N,1 £j<n starting with r;. First, a uni-
formly distributed pseudo-random variate v; € (0,1) was
generated. If v, > g, redundancy ry and fitness w, were
left unchanged. If v; < g, another uniform random
varlate v; € (0,1) was generated. If v; > ry, then wy
was set to zero, if it was not already equal to zero, If
vz < Ty, then a Gaussian pseudo-random deviate vy with
mean Ary and variance o} was generated. {2 was
parameterized by a variable ¢ such that oy, = ¢{1 — 1)) If
0<wv; <1, then ry was set to the value = U
13 < 0,ry was set to r,:,j =0, and f vy > 1,7y was set to
ry = 1. Random number generators used for uniform
and Gaussian deviates were based on the routines ‘ranl’
and ‘gasdev’ from Press et al {1992), ry Tollows a
probability distribution with density é(ri) j'_nw alx)dx
+8{r5) +6(1 — 1) 7 g(x)dx, where 0 < ry<l, and
g(x) is the density of a Gaussian distribution with the
above parameters. For ry close to either boundary, this
distribution will deviate from assumptions made in the
text, e.g. eqn 1. However, for most of the parameter
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combinations that were used here, mutation-selection
equilibria lie at some distance from the boundaries, so
that the dynamics close to equilibrium will conform to
the assumptions made in the main text. For example,
mean redundancy in mutation-selection equilibrium for
0.5 <1< 0.9 and 0.9 <¢ <1 lies between one and six
standard deviations g,, away from the boundary r = 0.

Selection and reproduction
From the populaton {I,...,Iy}, one member Iy was
chosen at random with uniform distribution. If its fitness
Wy was equal to one, it ‘survived’ into the next gener-
ation. If wy = 0, another random member of the popu-
lation was chosen at random and its fitness checked. This
process was iterated using the entire population
{&,...,In}, i.e. ‘with replacement’, until » members of
the population of survivors had been found. The proce-
dure corresponds to ‘soft selection’ {e.g. Hartl & Clark,
-1989) which assures a constant number of » individuals
every generation.

Each iteration of the above two steps was termed a
‘generation’. If Ny 1, populations reached a (quasi)-

equtlibrium of population mean redundancy. Whether
such an equilibrium had been reached after a certain
number of generations was judged by visual inspection
{for an example of the dynamics see Fig. 5). For the
‘crossing time’ estimates of Table 1, a population was
initialized such that all redundancies ry were equal to
0.99 (0.01) at time ¢ = 0. It was then established how
many generations elapsed before ¥, first became less
than (greater than) the equilibriom value predicted by
eqn 11,

Note that the case # = 1 corresponds to the ‘symmetric’
redundancy model {2) for two genes with genic mutation
rate /2.

Note added in proof

Since the acceptance of this manuscript in July 1997, a
conceptually quite different medel for the evolution of
redundancy was proposed (Nowak ef al, 1997, Nature
388: 161-171), arriving at similar conclusions for the case
Nu» 1. :
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