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Expression level, or abundance, is one of a protein’s most fun-
damental attributes. It varies by several orders of magnitude 
across the proteome and systematically differs between func-

tional classes of proteins1–3. The more abundant a protein is, the 
more likely it is to be essential, present in multiple tissues and inter-
acting with many other proteins4. Protein expression also plays an 
important role in protein evolution5–8. For example, natural selec-
tion stabilizes protein expression during evolution such that pro-
tein abundance correlates phylogenetically across divergent taxa9. 
Abundance is also the strongest predictor of the rate at which pro-
tein genotypes (sequences) evolve. Specifically, sequences of highly 
expressed proteins evolve slowly4,10–12.

We know much about how protein abundance affects the evolu-
tion of protein genotypes but next to nothing about how it affects 
the evolution of protein phenotypes. Here we study the effect of 
protein abundance on protein evolvability—a protein’s ability to 
evolve a new phenotype. Existing pertinent evidence is indirect 
and mixed. On the one hand, sequence-based evidence suggests 
that highly expressed proteins may be less evolvable than lowly 
expressed proteins. For example, in both Drosophila melanogas-
ter and Arabidopsis thaliana, highly expressed proteins experience 
fewer adaptive (beneficial) amino acid changes13,14. This may be a 
consequence of the generally slower sequence evolution of highly 
expressed proteins that is caused by misfolding toxicity14. However, 
such sequence-based evidence need not be relevant for the evolu-
tion of new phenotypes because proteins can evolve novel pheno-
types with very little sequence change15,16.

On the other hand, highly expressed proteins can be more stable 
compared with lowly expressed proteins17–19, and protein stability 
promotes protein evolvability20,21. It increases mutational robustness 
and enables proteins to accrue mutations that bring forth new phe-
notypes—neo-functionalizing mutations—which are often destabi-
lizing22. For example, a cytochrome P450 enzyme that is engineered 
for greater stability is more likely to evolve the ability to catalyse 

novel chemical reactions20. Similarly, stabilizing amino acid changes 
in populations of the antibiotic resistance protein TEM-1 beta lacta-
mase facilitate the evolution of resistance against the antibiotic cefo-
taxime5. This kind of evidence, however, supports a positive role for 
protein abundance only indirectly, via the effect abundance has on 
stabilizing mutations5,20.

Here we provide direct experimental evidence for the role of pro-
tein abundance in protein evolvability. To this end, we performed 
laboratory evolution experiments to study how the abundance of 
green fluorescent protein (GFP) affects its evolution towards the 
novel phenotype of cyan fluorescence in E. coli. For these experi-
ments, we deliberately chose a protein that is non-native to E. coli 
for two reasons. First, because the protein has not evolved to inter-
act with the E. coli proteome, it allows us to study the evolvability of 
a single protein independently of interactions with other proteins. 
Second, because the protein is not essential for survival, it allowed us 
to help minimize the role of misfolding toxicity in our experiments 
(Supplementary Table S1). Our results show that high expression 
diminishes evolvability of a protein, and it does so for reasons that 
are unrelated to the misfolding toxicity of highly expressed proteins. 
We demonstrate that under strong directional selection, the delete-
rious effects of a destabilizing mutation that reduces fluorescence 
intensity can be compensated for by increased protein abundance. 
As a result, proteins that are highly expressed allow more genetic 
variants that cause folding defects, which reduces their evolv-
ability. To our knowledge, this is the first study that investigates 
the role of abundance in the evolution of a single protein towards  
a novel phenotype.

Results
Low protein expression promotes evolvability. To study the influ-
ence of protein abundance on phenotypic evolution, we evolved 
populations of GFP in E. coli towards the new colour phenotype 
of cyan fluorescence, as quantified by fluorescence emission in 
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the AmCyan channel of an Aria III cell sorter (BD Biosciences, 
λex = 405 nm, λem = 510 ± 25 nm; Fig. 1a and Methods). During 
experimental evolution, we transcribed plasmid-encoded GFP 
either from the high-expression acp promoter or the low-expression 
arg promoter2,23. Protein expression driven by these promoters lies 
in a biologically sensible range2,24 and differs by approximately 
threefold (Methods and Fig. 1b). We performed four replicate evo-
lution experiments for high and low GFP expression (8 = 4 × 2 rep-
licates) and refer to the respective four replicate populations as H 
and L populations. For each population, we performed six rounds 
(‘generations’) of directed evolution. In each generation, we gen-
erated ~104–105 GFP variants through PCR (polymerase chain 
reaction)-based mutagenesis and used fluorescence-activated cell 
sorting to select cells whose cyan fluorescence lay in the top 0.05% 
of the population (Fig. 1a and Methods).

After six generations of evolution, cyan fluorescence had 
increased in both H and L populations (Fig. 1c). However, L popu-
lations evolved significantly higher cyan fluorescence than H pop-
ulations (P < 0.001, unpaired t-test, statistical analysis; Methods, 
Supplementary Table S2 and Fig. 1c). By the end of the sixth genera-
tion, cyan fluorescence had increased up to ~17-fold in L popula-
tions, compared with only ~fourfold in H population (Fig. 1c and 
Supplementary Table S2). Remarkably, even though L populations 
had started out at ~threefold lower absolute green fluorescence 
due to their lower GFP expression (Fig. 1b), they evolved ~2.5-fold 

higher absolute cyan fluorescence than H populations (Fig. 1d, 
P < 0.001, linear mixed effects model; Methods and Supplementary 
Fig. S1). In sum, low expression facilitated the evolution of a new 
colour phenotype in GFP.

L populations harbour fewer non-synonymous and neo- 
functionalizing variants. We next wanted to identify the genetic 
basis of the higher evolvability in L populations. We first focused 
on beneficial non-synonymous mutations, that is, mutations that 
change an amino acid of GFP and that improve cyan fluorescence. 
Some of these mutations may have been ‘neo-functionalizing’, 
that is, they may have been responsible for the colour-shift from 
green to cyan fluorescence. We hypothesized that GFP in L popula-
tions might have evolved faster if these populations accumulated 
more such variants. To find out, we used single-molecule real-time 
sequencing (SMRT) to genotype ~1,000 to 4,000 GFP molecules for 
each replicate population at every generation of directed evolution 
(Methods) and counted the average number of non-synonymous 
variants. To our surprise, not L but H populations accumulated 
significantly more non-synonymous variants (Fig. 2a, P = 0.003, 
unpaired t-test; Methods).

To identify neo-functionalizing variants among the non- 
synonymous variants, we focused on variants that rose to a high 
frequency (f > 0.4) in at least one H or L population, reasoning that 
variants responsible for a large increase in cyan fluorescence are 
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Fig. 1 | Low gFP expression promotes evolution of a novel cyan fluorescence phenotype. a, Experimental design. We evolved eight replicate populations 
(four at high and four at low GFP expression) for six rounds (‘generations’) of directed evolution, where mutagenesis alternated with selection in each 
generation. Specifically, we evolved GFP towards cyan fluorescence, which requires a shift in excitation wavelength from 488 nm to 405 nm. b, Green 
fluorescence intensity for the three replicate ancestral populations that express GFP at a high (H) or a low (L) level (two-tailed unpaired t-test, n = 3, 
P = 0.0004, Cohen’s d = 31.4 ± 25.4, Student's t (henceforth 't') = 38.54, 95% Confidence Interval (henceforth '95%CI') = 609.8, 754.1, degrees of freedom 
(henceforth 'df') = 2.11). c, Fold change in cyan fluorescence compared with the ancestor after six generations of directed evolution in four H and four L 
populations (two-tailed unpaired t-test, n = 4, P = 0.0015, Cohen’s d = 5.74 ± 3.92, t = 8.12, 95%CI = 9.2, 19.1, df = 3.79). d, Absolute cyan fluorescence after 
six generations in four H and four L populations (two-tailed unpaired t-test, n = 4, P = 0.002, Cohen’s d = 3.74 ± 2.88, t = 38.54, 95%CI = 400.5, 1,101.4, 
df = 5.3). In panels b–d, red and blue represent the H and L populations, respectively. The boxes represent interquartile range while the solid line represents 
the median. The whiskers extend to the lowest and the highest value in the dataset. Each circle represents an ancestral (b) or evolved (c and d) population. 
* denotes a significant difference between H and L populations at P < 0.01 based on the unpaired t-test (Methods).
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likely to sweep to high frequency during evolution. There were nine 
such variants (A65S, D133N, S147P, K156R, K166N, S175G, T203S, 
A206T and G232A). We engineered them individually into ances-
tral GFP populations and analysed their effects on green and cyan 
fluorescence when they are expressed in both the H and L genetic 
background (Methods). The increase in cyan fluorescence was not 
the same when a given variant was expressed in the H or L genetic 
background (Supplementary Table S3). We suspect that the effects 
of expression level are not restricted to the reproductive fitness of an 
individual carrying the variant, as recently demonstrated25, but also 
extend to the fluorescence output for some variants. Despite these 
differences in the extent of the fluorescent increase, all nine vari-
ants except D133N in the H background increased the intensity of 
cyan fluorescence (Supplementary Table S3). However, only two of 
these nine variants (A65S and T203S) increased cyan fluorescence 
while significantly decreasing green fluorescence, due to an excita-
tion shift from 405 nm to 488 nm (unpaired t-test, P = 0.02, 0.006, 
0.008, 0.003 for T203S and A65S in H and L background, respec-
tively; Supplementary Table S3 and Supplementary Fig. S2). These 
were the only two neo-functionalizing variants. We expected them 
to rise to higher frequency in L populations, but to our surprise, the 
opposite was the case. They rose to higher frequencies in H popula-
tions (Fig. 2b, P = 0.007, unpaired t-test; Methods). This observa-
tion shows that the greater cyan fluorescence of L populations is 
not caused by a higher frequency of neo-functionalizing mutations.

H populations evolve lower folding stability. Because our experi-
ments showed that the greater evolvability of L populations is not 
caused by a greater accumulation of beneficial neo-functionalizing 
variants (Fig. 2b), we next focused on deleterious variants. The most 
prominent class of such mutations impair protein folding20,26, and 
we hypothesized that such variants are retained when GFP is highly 
expressed. Because past work has linked high protein expression to 
protein misfolding toxicity, we first suspected that the cause may 
involve a general toxicity of misfolded GFP to E. coli host cells. 
However, we found that such toxicity does not play a role in our 
experiments because the growth rates of H and L populations were 
indistinguishable during adaptive evolution towards cyan fluores-
cence (Supplementary Table S1).

To identify a mechanism that may cause H populations to retain 
more destabilizing deleterious mutations than L populations, we 

developed a computational model for the directed evolution of GFP. 
The model’s structure and parameters are motivated by our experi-
mental design (Supplementary Information). The model (Fig. 3a) 
uses a ‘fitness’ function Fcell that represents the fluorescence intensity 
of a cell and relates it to the abundance of GFP and its biophysi-
cal properties. Specifically, Fcell is proportional to the fluorescence 
output ξ of GFP (that is, the product of its quantum yield and its 
extinction coefficient), its folding stability (∆G) and its expression 
level (A), that is,

Fcell ∝ ξA = ξ × f(ΔG)× A (1)

We refer to the function f(∆G) as the ‘stability factor’. It relates the 
fluorescence intensity of individual GFP molecules to their folding sta-
bility, ∆G. It is motivated by experimental data27, has a sigmoidal form 
and approaches 1 and 0 for highly and lowly stable variants, respec-
tively (Supplementary Equation S4). All three quantities (that is, ξ, ∆G 
and A) can change a cell’s fluorescence intensity. Variation in expres-
sion level A distinguishes our H and L populations. This expression 
level is subject to gene expression noise, which causes expression vari-
ation within a population, which we modelled through an empirically 
motivated log-normal distribution. Note that in our populations, ~105 
GFP variants created by mutations are distributed among ~109 cells. 
This implies that at every instance, the fluorescence distribution of the 
109 cells can be thought of as being composed of ~105 log-normal dis-
tributions. The ‘meta-distribution’ of these log-normal distributions 
is also log-normally distributed28 (Supplementary Information and 
Supplementary Fig. S13). Because our experimental design precluded 
the mutation of the GFP promoter, we did not allow mutations to 
change the distribution of expression level in the model. In contrast, 
because mutations can change both folding stability and fluorescence 
output, we allowed both properties to change in the model. We mod-
elled selection by allowing a given top percentile of fluorescent cells to 
survive (Fig. 3b), just as in our experiments. In other words, for a cell 
to survive, its relative fluorescence intensity—expressed as a percent-
age of the intensity of the highest-fluorescing cell in the population—
must exceed this threshold. This also means that the product of the 
relative GFP stability factor and abundance must exceed this thresh-
old (Supplementary Information). The stronger selection becomes, 
the larger the product of the relative stability factor and abundance 
that is necessary for a cell to survive selection (Fig. 3c).
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Fig. 2 | L populations harbour fewer non-synonymous and neo-functionalizing variants. a, The average number of non-synonymous variants per GFP 
molecule is significantly lower in L (blue) than in H (red) populations (two-tailed unpaired t-test, n = 6, P = 0.003, Cohen’s d = 2.95 ± 1.87, t = 5.12, 
95%CI = 0.28, 0.86, df = 5; Methods). b, The average number of neo-functionalizing variants per GFP molecule is significantly lower in L populations 
(blue) than in H (red) populations for six generations of directed evolution (two-tailed unpaired t-test, n = 6, P = 0.007, Cohen’s d = 2.52 ± 1.73, t = 4.37, 
95%CI = 0.096, 0.37, df = 5; Methods). Not all sequenced GFP molecules harbour the neo-functionalizing variant, which is why the average is lower than 
one in all experiments. In both panels, each dashed line corresponds to data from one replicate population, and the solid line represents the mean of the 
four replicate populations.
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With this model, we asked whether destabilizing mutations can 
become enriched in H populations. To this end, we considered two 
populations of 10,000 GFP expressing cells that differed in their 
average GFP expression like our experimental H and L popula-
tions (Supplementary Information section 3.5). We first made 

the simplifying assumption that each GFP variant in a population 
has the same fluorescence output. In other words, we assumed 
that most surviving GFPs under strong selection have at least one 
neo-functionalizing mutation that allowed them to emit cyan fluo-
rescence. Under this assumption, any change in the value of cyan 
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selection, ranging from a selection strength of 0.1 (90% of GFP population survives, light grey) to 0.9 (10% of GFP population survives, black). We selected 
cells from the replicates of our original population of 10,000 cells until we had collected n = 10,000 survivors. h, Experimentally measured refolding yield  
(y axis) during 1,000 minutes (x axis) for GFP variants in L and H populations after six generations of directed evolution. Black lines (composed of black 
circles) denote the average over four replicate populations, while coloured error bars show one standard deviation. L populations show a significantly  
higher refolding yield than H populations (P = ~0.0001; two-sided unpaired t-test, effect size calculated as Z/√N = 1.23).
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fluorescence is caused by changes in gene expression or by muta-
tions that affect protein stability. In other words, the fluorescence 
intensity of different cells in the same population depends only on 
the product of GFP stability and abundance.

After one round of simulated mutagenesis (denoted by the 
grey circles in Fig. 3d,e), we selected the top 10% of fluorescing 
cells (denoted by blue circles in Fig. 3d and red circles Fig. 3e) for 
L and H populations. Importantly, although the same percentile 
of fluorescent cells survived selection in both populations, the H 
population harboured more destabilizing mutations in the model 
(P < 10−16, Wilcoxon’s rank sum test; Fig. 3f).

The reason is that although we selected the same percentile of 
fluorescent cells in both populations, the range of expression lev-
els in surviving cells (from minimum to maximum) is broader 
in H populations than in L populations. This is mainly caused by 
the log-normality of the abundance distribution, whose skewness 
increases with its standard deviation. GFP abundance in H popu-
lation has a higher standard deviation and is more left-skewed. 
Therefore and because maximum fluorescence is more likely 
achieved by GFPs with high stability, the higher range of fluores-
cence in the H populations corresponds to a wider range of sta-
bilities (Supplementary Fig. S14). Indeed, when we used a normal 
distribution to model protein abundance, GFP stability did not 
decrease with higher mean abundance (Supplementary Information 
and Supplementary Fig. S9).

This observation, which rests on a single cycle of mutation and 
selection, extends to ten cycles and to varying strengths of selection 
(Fig. 3g; simulation details in Supplementary Information). In the 
absence of selection, evolution does not change the stability of GFP 
regardless of its abundance (Fig. 3g). However, the stronger selec-
tion becomes, the more efficiently GFP variants with folding defects 
are purged. Most importantly, purging becomes less efficient as GFP 
abundance increases. In sum, when GFP is highly expressed during 
evolution, it retains more destabilizing mutations than when it is 
lowly expressed (Fig. 3g).

To validate our theoretical results experimentally, we first asked 
whether H populations show a lower median abundance of GFP 
(relative to the maximal abundance in the same population). To 
find out, we compared the distribution of the relative fluorescence 
intensity of ancestral GFP in H and L populations. Because these 
populations are genetically homogeneous, any variation in fluo-
rescence intensity within them must be caused by gene expression 
noise. Indeed, the fluorescence intensity of each population was 
log-normally distributed, but ancestral H populations displayed 
lower relative fluorescence intensities than ancestral L populations 
(P < 10−16, Wilcoxon’s rank sum test; Supplementary Fig. S5).

Second and more importantly, we experimentally measured the 
folding stability of GFP variants in H and L populations at the end 
of the six generations of directed evolution. To this end, we used a 
kinetic assay that quantifies the refolding yield of GFP populations 
upon combined thermal and urea-induced denaturation21. Previous 
experiments have shown that populations of fluorescent proteins 
with a higher fraction of folded and soluble proteins recover a 
higher percentage of their fluorescence upon thermal denatur-
ation21. On the basis of our simulations, we hypothesized that the 
refolding yield of GFPs should be substantially higher in L popu-
lations than in H populations. This was indeed the case (Fig. 3h,  
P < 10−16; two-sample t-test; Methods). Specifically, in H popula-
tions the proportion of refolded proteins was ~0.4 ± 0.05, whereas 
in L populations this proportion was ~0.7 ± 0.08.

Robust H and L populations have similar evolvability. If destabi-
lizing GFP variants impair the evolution of cyan fluorescence in H 
populations, removing such variants or increasing the robustness 
of evolving populations to such mutations might make the evolu-
tion of cyan fluorescence similar in both populations. One way to 

increase robustness is to subject evolving proteins to weak stabiliz-
ing selection to preserve their phenotype29,30. Under such selection, 
protein populations can accumulate mutations that enhance fold-
ing stability and neutralize the effect of destabilizing mutations. 
We therefore asked whether cyan fluorescence evolved similarly in 
H and L populations after subjecting both kinds of populations to 
weak stabilizing selection. Specifically, we performed a two-phase 
experiment that evolved four replicate H and L populations, first 
under weak stabilizing selection for green fluorescence (Fig. 4a, 
Phase I) and then under directed evolution for cyan fluorescence 
(Fig. 4a, Phase II).

In phase I, which lasted for three generations, we allowed the 
top 70% of cells with the highest green fluorescence to survive in 
each generation (Fig. 4a). Not unexpectedly, at the end of this phase, 
neither green nor cyan fluorescence had changed significantly in 
either kind of population (unpaired t-tests P = 0.77 and P = 0.99 
for green fluorescence, and P = 0.43 and P = 0.55 for cyan fluores-
cence of H and L populations, respectively; Supplementary Fig. S3). 
To find out whether phase I had enriched our populations with 
foldability-enhancing mutations, we quantified the refolding yield 
of the H and L populations at the end of phase I (ref. 15). Indeed, in 
contrast to our first directed-evolution experiment, where H popu-
lations were less foldable (Fig. 3h), phase I had rendered the refold-
ing yield between H and L populations indistinguishable (Fig. 4b). 
This suggests that foldability-enhancing mutations accumulated, 
and especially so in H populations, which had been more sensitive 
to foldability defects in our first directed-evolution experiment.

Before continuing to phase II, we used SMRT to find out whether 
known mutations that improve folding stability had occurred in our 
populations. To this end, we genotyped ~1,000 to 4,000 evolved vari-
ants for each replicate population at the end of phase I. We found 
that no single variant had risen to a frequency f exceeding 0.1 in 
any H or L population, which is expected given the weak selection 
pressure of phase I. Nonetheless, those 20 variants that had reached 
the highest frequency—the top 20 variants—were strikingly simi-
lar between all H and L populations. First, all 160 of these variants 
(20 variants in each of eight populations) affected only 41 different 
amino acid positions. Second, the same six amino acid positions, 
namely, 99, 101, 156, 162, 166 and 238 were mutated in the top 20 
variants for all H and L populations. Genetic parallelism of this 
kind has been observed before when foldability-enhancing muta-
tions rose to appreciable frequency after weak selection21. Third, 
several amino acid positions mutated in the top 20 variants have 
been shown to increase fluorescence intensity by improving the 
foldability of GFP. For instance, mutations at positions 99 (mutated 
in all H and L populations), 153 and 163 (mutated in two H popula-
tions each) occur in a known GFP mutant with improved foldabil-
ity31,32. Similarly, mutations at position 166 (occurring in all H and L 
populations) and position 64 (occurring in two L populations) can 
increase fluorescence of GFP up to 28-fold by improving foldabil-
ity33. Furthermore, mutations at position 238 (mutated in all H and 
L populations) and 212 have also been implicated in improved fold-
ability of GFP34. In sum, multiple mutations that become frequent 
after phase I in both H and L populations are known to increase the 
folding stability of GFP.

We next performed phase II-directed evolution (Fig. 4a) to test 
our central hypothesis that cyan fluorescence is less evolvable in 
H populations because such populations are more susceptible to 
folding defects (Fig. 3d,e). After phase I evolution had enriched L 
and H populations with foldability-enhancing mutations and ren-
dered their GFP molecules similar in their folding stability (Fig. 4b), 
they should also evolve similar levels of cyan fluorescence. To find 
out, we used the H and L populations at the end of phase I as the 
starting populations for five rounds of directed evolution towards 
cyan fluorescence (Fig. 4a, henceforth ‘phase II’). Just as in our  
main experiment (Fig. 1a), we selected cells for survival whose 
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cyan fluorescence lay in the top 0.05% of the population. At the 
end of phase II, the increase in cyan fluorescence intensities of L 
and H populations was identical (Fig. 4c, P = 0.58, unpaired t-test). 
Importantly, the increase in cyan fluorescence was significantly 
greater in both H and L populations (~40-fold for H and ~43-fold 
for L) than in our main experiment (~threefold for H and ~17-fold 
for L), further supporting the importance of stabilizing mutations 
for adaptive evolution20,22,29. Overall these results show that the 
evolvability of cyan fluorescence in H and L populations becomes 
comparable after stabilizing selection helps buffer the effect of 
destabilizing mutations. This reinforces our major observation that 
increased GFP expression in H populations allows the retention of 
GFP variants with folding defects and hence inhibits the evolvability 
of cyan fluorescence in these populations.

Discussion
We evolved populations of GFP with high (H) and low (L) pro-
tein expression towards the novel phenotype of cyan fluorescence.  

Even though H populations accumulated more non-synonymous 
mutations, their high GFP expression hindered the evolution of 
cyan fluorescence. The reason was that highly expressed GFP popu-
lations retained more deleterious mutations that caused protein 
misfolding. High expression also resulted in a greater accumulation 
of neo-functionalizing mutations, which are often destabilizing. 
We theoretically predicted (Fig. 3d,e) that high expression can help 
proteins with folding defects survive selection that would otherwise 
eliminate them from a population. The accumulation of such fold-
ing defects reduces a protein’s ability to evolve a new phenotype. 
Our experimental results support this prediction (Fig. 3h). We fur-
ther showed that weak stabilizing selection can help mitigate this 
problem by helping foldability-increasing mutations to accumulate, 
which eliminates the evolvability disadvantage of highly expressed 
proteins (Fig. 4c).

Our results pertain to the role of protein abundance in the evolv-
ability of protein phenotypes on short evolutionary time scales. We 
emphasize that our observations are independent from and do not 
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Fig. 4 | evolvability of gFP becomes indistinguishable in H and L populations when the starting population is robust to destabilizing variants. a, We 
evolved eight replicate populations (four at high expression level and four at the low expression level) in two phases. In the first phase, we imposed weak 
stabilizing selection on green fluorescence, where we allowed the top 70% of green-fluorescing cells to survive. This phase lasted three generations. In 
the second phase, we imposed strong directional selection on cyan fluorescence, as in our main experiment (Fig. 1a). b, Refolding yield measured over 
1,000 minutes for GFP in L and H populations after three generations of stabilizing selection. Black lines (composed of circles) denote the average refolding 
yield over four replicates, while error bars indicate one standard deviation of the mean. Stabilizing selection has rendered refolding yield statistically 
indistinguishable between H and L populations (P = 0.24, two-sample t-test; Methods). c, Fold change in cyan fluorescence compared with ancestral GFP 
after five generations of second phase of directed evolution in four H and four L populations. Stabilizing selection has rendered the fold change in cyan 
fluorescence statistically indistinguishable between L and H populations (two-tailed unpaired t-test, n = 4, P = 0.58, Cohen’s d = 0.41 ± 1.75, t = −0.58, 
95%CI = −17.89, 10.9, df = 5.98; Methods). The box represents the interquartile range, while the solid line represents the median. The whiskers extend to the 
lowest and the highest value in the dataset while each circle represents an evolved population. Red and blue represent H and L populations, respectively.
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contradict the misfolding avoidance hypothesis, which can help 
explain why the sequences of highly expressed proteins evolve slowly 
on long evolutionary time scales. This hypothesis posits that highly 
expressed proteins impose a fitness cost on a cell when misfolded, 
because protein misfolding can be toxic and especially so for highly 
expressed proteins. Destabilizing mutations in such proteins are thus 
rarely tolerated, which leads to low rates of amino acid sequence 
evolution on longer evolutionary time scales. The selection pressure 
that causes this effect may be too weak to manifest itself on short 
evolutionary time scales. Misfolded proteins can be costly to a cell 
when present in large numbers and reduce the reproductive fitness 
of the cell. The resulting misfolding toxicity does not play a major 
role in our experiments, because first, the amount of GFP expressed 
in H and L populations is not very high (Methods provide details 
of expression levels). Second and more important, the growth rates 
of H and L populations are indistinguishable throughout our evo-
lution experiment (Supplementary Table S1). In other proteins or 
experiments where misfolding toxicity plays a role, it may cause an 
additional evolvability disadvantage for highly expressed proteins.

Protein sequence evolution is most commonly studied by com-
paring hundreds of protein orthologs whose sequence differences 
have accumulated over millions of years4,35,36. Very few studies have 
demonstrated the influence of gene expression level on short-term 
protein evolution37. Our work shows that protein abundance can 
influence not only the rate of sequence evolution (Fig. 2a) but also 
the rate of evolution of a new protein phenotype and that it can do 
so even on the short time scale of laboratory evolution.

The mechanism we identified for the high evolvability of lowly 
expressed proteins relies on a synergy between protein scarcity 
and stability in the sense that low protein abundance favours sta-
ble proteins (which in turn facilitate evolvability)21. The reason is 
that fluorescence intensity, our focal phenotype, depends on the 
product of protein abundance and stability. In consequence, muta-
tions can reduce protein stability to some extent as long as protein 
abundance can compensate for the reduced stability. This is why 
the stability of GFP evolving in H populations can decrease to a 
greater extent than in L populations. Because the ability to compen-
sate for reduced folding stability is smaller in L populations, these 
populations evolve genotypes with higher folding stability. The 
phenomenon resembles the evolution of drift-robustness in which 
genotypes from small populations can evolve reduced vulnerability 
to genetic drift and become less likely to accumulate small-effect  
deleterious mutations38.

Scarcity–stability synergy requires two further conditions to be 
met. The first is that directional selection must be strong, otherwise 
high protein abundance will not be able to compensate effectively 
for reduced stability (Fig. 3h). Although we use threshold-based 
(truncation) selection in our experiments, we emphasize that a syn-
ergy between scarcity and stability can also manifest itself during 
other kinds of selection, as long as selection is strong. For instance, 
synergy between protein scarcity and stability also causes low evolv-
ability for highly expressed proteins under a probabilistic form of 
selection, that is, when a cell’s probability of surviving selection 
decreases with decreasing fluorescence (Supplementary Fig. S11). 
In fact, the mere presence of gene expression noise effectively causes 
selection to be probabilistic. For example, in our experiments, selec-
tion acted on subpopulations of ~104 genetically identical cells for 
each of ~105 different variants created by mutation. Each of the 
genetically identical cells is subject to gene expression noise, which 
causes different cells to express different amounts of the same pro-
tein, such that their fluorescence varies probabilistically. In other 
words, the population of individuals surviving selection is sampled 
from a meta-distribution made up of ~105 individual distribu-
tions. Cells in a subpopulation with higher mean fluorescence also 
have a higher probability of surviving selection, which renders  
selection probabilistic.

The second requirement is a heavy-tailed distribution of protein 
abundance per cell, which is known to be caused by gene expression 
noise1,2,39. In the absence of gene expression noise, scarcity–stabil-
ity synergy does not lead to higher evolvability at low expression 
(Supplementary Fig. S8). Also, gene expression noise must cause a 
heavy-tailed abundance distribution, that is, a distribution in which 
a greater proportion of proteins show high abundance than in a 
normal distribution (Supplementary Fig. S9). Our model uses the 
log-normal distribution, a specific heavy-tailed distribution that 
reflects the empirically observed GFP abundance distributions for 
our H and L populations. However, other heavy-tailed distributions, 
such as a gamma distribution, also lead to a preferential accumu-
lation of destabilizing mutations in H populations (Supplementary 
Fig. S10). We note that most proteins from organisms as different as 
E. coli, yeast and humans show a noise-induced heavy-tailed abun-
dance distribution40–44.

More generally, our observations contribute to a growing litera-
ture on the importance of gene expression noise for adaptive evo-
lution45–47. First, gene expression noise can promote the fixation of 
beneficial mutations, particularly in fluctuating environments46,47. 
Second, expression noise can also enhance the adaptive value of 
beneficial mutations through a synergism between cell-to-cell 
expression variation and genetic variation45. A complication in dis-
tinguishing the role of gene expression noise from that of average 
expression is that the two are correlated—low mean gene expression 
entails greater expression noise45. Our results suggest that whenever 
gene expression noise facilitates adaptive evolution, the lower aver-
age expression of evolving proteins may be part of the reason. To 
disentangle the role of mean expression from that of noise remains 
an important task for future work.

Scarcity–stability synergy is likely to be important far beyond 
GFP because it exists wherever abundance and stability contrib-
ute multiplicatively to a protein phenotype48–50. This multiplicative 
relationship has been shown to accurately predict the changes in 
bacterial growth rate with different orthologs of essential proteins, 
such as dihydrofolate reductase (DHFR)8, and resistance conferring 
enzymes, such as β-lactamase6. The additional requirements of a 
heavy-tailed protein abundance distribution and strong selection 
also apply to a broad range of proteins and organisms, both during 
experimental evolution and in the wild21,40–44,51–53. In consequence, 
scarcity–stability synergy may be widespread in facilitating the evo-
lution of new phenotypes and functions in lowly expressed proteins.

Methods
Strains, promoters and the GFP gene. We performed all our experiments in  
E. coli strain K12 MG1655. We started from a previously characterized2,24 library 
(Dharmacon, GE Healthcare) of 1,800 E. coli promoters expressed from a low copy 
plasmid (Supplementary Fig. S4) in this strain. Each plasmid in the library contains 
a unique promoter region from E. coli, which constitutively drives the expression of 
the GFPmut2 protein, a variant of green fluorescent protein from jellyfish Aequorea 
aequorea54. This variant harbours three substitutions (S65A, V68L and S72A) that 
result in a 100-fold increase in fluorescence. Their increased brightness results 
from efficient folding and from a shift in the excitation maximum from 395 nm to 
481 nm (ref. 55). We used this protein, henceforth ‘GFP’, as the starting point for all 
our directed-evolution experiments.

From the promoter library, we chose two promoters that differed in their mean 
expression for our experiments. Specifically, we chose for high expression, the 
promoter of the acpP gene, which encodes the acyl carrier protein. And we chose for 
low expression the promoter of argW, which encodes arginine tRNA synthase23. The 
two promoters differ ~threefold in their expression level, with a less than twofold 
difference in the standard deviation of expression (Supplementary Table S4).

Construction of expression plasmids. We modified the two plasmids from 
the promoter library that carried the acpP and argW promoters by altering the 
upstream XbaI site of the GFP gene in both plasmids using a primer with wobble 
nucleotides (Supplementary Table S5, ‘for construction of expression plasmid’). For 
this purpose, we amplified the GFP-coding gene together with the unique BamHI 
(upstream) and XbaI (downstream) restriction sites. We used Phusion Hot Start II  
High-Fidelity DNA Polymerase (Thermo#F549L) to minimize copying errors 
during the PCR. We ligated the amplified PCR product into the BamHI-XbaI 

NAtuRe ecoLogy & evoLutioN | VOL 6 | AUGUST 2022 | 1155–1164 | www.nature.com/natecolevol 1161

http://www.nature.com/natecolevol


Articles NATure ecoloGy & evoluTIoN

double-digested plasmid backbone by using T4 DNA ligase (NEB#M0202). 
Supplementary Fig. S4 shows the relevant regions of the modified plasmid.

After electro-transforming the ligation products into E. coli competent cells,  
we Sanger-sequenced several of the resulting clones and chose a correctly 
constructed plasmid for subsequent experiments. We measured the mean GFP 
expression for the newly constructed plasmids on a Fortessa cell analyser  
(BD Biosciences; ‘Fluorescence assay using flow cytometry’ section provides 
details) and found that the acpP promoter drove 2.9-fold higher expression than 
the argW promoter (Supplementary Table S4). We split the bacterial cultures  
with the two ancestral plasmids to create four replicate populations, each driving 
GFP at either high or low expression.

Preparation of electro-competent cells for transformation. We prepared 
electro-competent cells using glycerol/mannitol step centrifugation56. Specifically, 
we cultured E. coli MG1655 cells in 5 ml SOB medium at 37 °C in a shaking 
incubator (INFORS HT) at 220 r.p.m. overnight. After overnight growth, we 
transferred 3 ml of culture into 300 ml SOB medium (Super Optimal broth, 
also known as Hanahan's broth) and incubated at 37 °C and 220 r.p.m. until the 
culture’s OD600 (Optical density at 600 nm) had reached a value between 0.4 and 0.6 
(optical path length: 1 cm, 2–4 h). We then kept the culture on ice for 15–20 min 
and collected cells at 4 °C by centrifuging them at 1,500 g for 15 min (Eppendorf 
5810/5810 R). We re-suspended the cells in 60 ml ice-cold dd H2O (double distilled 
water) and split the culture into 10 ml aliquots in 50 ml tubes. With a 10 ml pipette, 
we carefully added 10 ml ice-cold glycerol/mannitol solution (20% glycerol (w/v) 
and 1.5% mannitol (w/v)) to the bottom of every 50 ml tube. We centrifuged the 
tubes at 1,500 g and 4 °C for 15 min without acceleration or deceleration. We then 
discarded the supernatant and re-suspended cells in 3.0 ml ice-cold glycerol/
mannitol solution. We distributed 100 μl aliquots of the resulting suspension into 
pre-cooled 1.5 ml tubes, flash-froze the aliquots in liquid nitrogen and stored them 
at −80 °C for transformation experiments.

Electro-transformation. We mixed 10 μl of ligation product with 100 μl of 
electro-competent E. coli MG1655 cells and transferred them to a 0.2 cm 
electroporation cuvette (EP202, Cell Projects). For transformation, we provided 
a 15 kV cm−1 pulse using a Micropulser electroporator (Bio-Rad). We then 
immediately added 1 ml pre-warmed SOC medium (Super optimal broth with 
catabolite repression) and transferred the culture into a 10 ml tube. Subsequently, 
we incubated the culture for 1.5 h at 37 °C in a shaking incubator (INFORS HT) at 
220 r.p.m. and used the recovered transformants for the following experiments.

PCR mutagenesis. We used the Agilent Genemorph II mutagenesis kit to 
introduce random mutations into the coding region of our GFP gene. To achieve 
a low mutation rate (2 to 3 mutations per GFP molecule and generation), we used 
two-step PCRs. Specifically, we mixed 5 μl of Mutazyme buffer II, 1 μl of 40 mM 
dNTPs (deoxyribonucleotide triphosphate), 1 μl each of 10 μM forward and reverse 
primer (Supplementary Table S5, ‘for mutagenesis’), 1 μl of Mutazyme II and 40 ng 
of template in a 25 μl PCR reaction volume. We used the following conditions to 
execute the PCR reaction: 95 °C for 2 min; 5 cycles of 95 °C for 30 s, 50 °C for 30 s 
and 72 °C for 1 min; 72 °C for 10 min. We mixed 4 μl of the resulting PCR product 
with 5 μl of polymerase buffer, 2 μl of 10 mM dNTP, 1 μl each of 10 μM forward 
and reverse primer (Supplementary Table S5, ‘for mutagenesis’) and 0.25 μl of Taq 
polymerase (NEB#M0273S) in a 50 μl volume. We performed the PCR reaction 
as follows: 95 °C for 30 sec; 25 cycles of 95 °C for 20 s, 50 °C for 30 s and 68 °C for 
1 min; 68 °C for 2 min.

We purified the PCR products with a Qiagen PCR purification kit 
(Qiagen#28104) and double digested the purified products overnight at 37 °C with 
BamHI (NEB#R3136S) and XbaI (NEB#R0145S). We used DpnI (NEB#0176 S) 
to digest the plasmid template. We purified the digested inserts using a PCR 
purification kit and verified sample purity with agarose gel electrophoresis. We 
used BamHI and XbaI to digest the plasmid backbone and purified it using a 
QIAquick gel-extraction kit. We then mixed the purified insert, the purified 
plasmid backbone (BamHI and XbaI) and T4 DNA ligase in a 20 μl reaction and 
incubated it at 15 °C overnight for ligation. To purify the ligation product, we 
precipitated it by mixing it with 1 µl of glycogen (Thermo#R0561), 50 µl of 7.5 M 
ammonium acetate (Sigma), 375 µl of ice-cold absolute ethanol and 80 µl of dd 
H2O. After incubation at −20 °C for 20 min, we centrifuged the mixture at 18,000 g 
for 20 min (Eppendorf 5810/5810 R). We then washed the precipitate twice using 
800 µl of 70% cold ethanol. After drying the precipitate using a concentrator 
(Eppendorf 5301), we dissolved it in 10 µl of ddH2O and used this purified ligation 
product for transformation.

Selection of GFP for cyan fluorescence. We implemented stringent selection for 
high fluorescence via two consecutive steps of cell sorting, in which only 0.05% of 
all cells survived selection in every generation.

After transforming E. coli cells with a mutagenized library of GFP-encoding 
plasmids, we incubated the transformants at 37 °C and 220 r.p.m. for 1.5 h. We then 
sampled 10 µl of the recovered transformants and diluted the culture with saline 
to determine the library size by plating aliquots on low-salt LB (Luria Bertani 
medium) agar plates (10 g tryptone, 5 g NaCl and 5 g yeast extract, 25 g agar in 

1 l of water) containing 25 μg ml−1 kanamycin. In every generation of directed 
evolution and for every replicate population, our libraries comprised 104–105 cells. 
We added 10 ml low-salt LB medium with 25 μg ml−1 kanamycin to the rest of the 
recovered transformants (in ~900 μl culture) and incubated the culture overnight at 
37 °C with shaking at 220 r.p.m. (INFORS HT). We added 100 μl of this overnight 
culture to 10 ml of M9 minimal medium supplemented with 25 μg ml−1 kanamycin 
and 0.2% arabinose and incubated at 37 °C with shaking at 220 r.p.m. After 22 h 
of incubation, we centrifuged the culture at 8,000 g and 4 °C for 3 min (Eppendorf 
5810/5810 R). After discarding the supernatant, we washed the cells twice with 
2 ml PBS (Sigma#A9226) and re-suspended the washed cells in 2 ml cold PBS for 
fluorescence-assisted cell sorting.

We sorted cells at 4 °C on an Aria III cell sorter (BD Biosciences), using the 
AmCy channel (λex = 405 nm, λem = 510/50 nm) and a sorting speed of ~3 × 104 
events per s. We used the precision of 4-Way Purity to minimize contaminating 
particles. We collected 50,000 cells with fluorescence in the top 1% in 500 μl cold 
PBS for each replicate population. To minimize cell proliferation or cell death 
during sorting, we kept each sample on ice until all samples had been processed. 
After sorting, we added 1 ml of low-salt LB medium and allowed the cells to 
recover at 37 °C for 1 h in a shaking incubator at 220 r.p.m. Thereafter, we plated 
5 μl of culture on low-salt LB agar plates containing kanamycin to estimate 
the library size after sorting. We then added 5 ml of low-salt LB medium with 
25 μg ml−1 kanamycin to the rest of the culture and incubated at 37 °C overnight at 
220 r.p.m. We inoculated 100 μl of this overnight culture in 10 ml of M9 minimal 
medium supplemented with 0.2% arabinose and 25 μg ml−1 kanamycin and 
incubated overnight at 37 °C with shaking at 220 r.p.m.

We followed the same procedure as described above to re-sort the re-grown 
cells except that we selected the top 5% of all cells in the AmCy channel. We stored 
part of the culture as a glycerol stock and used the remaining culture for plasmid 
extraction using the QIAprep spin miniprep kit (Qiagen#27104). We used the 
extracted plasmids as templates for the next generation of directed evolution and 
SMRT sequencing.

The green (ancestral) and cyan (new) fluorescence spectra overlap to  
some degree, but the excitation maxima are more than 80 nm apart. More 
importantly, however, this overlap does not affect the selection of GFP variants 
with neo-functionalizing mutations in the evolving GFP populations (Fig. 2b).  
Correlations between two traits are the rule rather than the exception in  
evolving proteins, because ancestral and derived phenotypes are correlated in  
many proteins. That is, most novel protein functions are initially correlated  
with an ancestral function and diverge only later through mechanisms such as  
gene duplication57,58.

Fluorescence assay using flow cytometry. We inoculated 100 μl of glycerol 
stock for every replicate population of every generation into 5 ml of M9 minimal 
medium supplemented with 0.2% arabinose and kanamycin. We incubated  
these cells at 37 °C with shaking at 220 r.p.m. for 20 h (INFORS HT). We mixed 
50 μl of the resulting overnight cultures thoroughly with 450 μl of PBS and 
measured green (FITC (Fluorescein isothiocyanate) channel, λex = 488 nm, 
λem = 530/30 nm) and cyan (AmCyan channel λex = 405 nm, λem = 525/50 nm) 
fluorescence. For this purpose, we used the Fortessa cell analyser (BD Biosciences) 
at room temperature with a flow rate of ~10,000 events per s. For each sample,  
we collected data from 105 cells.

Flow cytometry data analysis. We used FlowJo v.10.4.2 to analyse flow cytometry 
data. We used all 105 cells to measure the mean and variance of green and cyan 
fluorescence and determined the fold change in fluorescence for every replicate 
population relative to its ancestral population. We used cells with plasmids 
encoding GFP but lacking a promoter as a negative control.

Statistical analysis. We used unpaired t-tests to compare ancestral green 
fluorescence (Fig. 1b), fold change in cyan fluorescence (Figs. 1c and 4c and 
Supplementary Fig. S3B), absolute cyan fluorescence (Fig. 1d), fold change in 
green fluorescence (Supplementary Fig. S3A) and refolding yield (Figs. 3h and 4c) 
between H and L populations.

For the accumulation of non-synonymous and neo-functionalizing mutations 
(Fig. 2a,b), we performed an unpaired t-test where we compared the difference 
between L and H population in each generation, with the null expectation of 
no difference (mean = 0). We took this approach to avoid the routine correction 
for multiple testing, which considers the sample size to be 4 (for four replicate 
populations) and ignores that the average number of non-synonymous and 
neo-functionalizing mutations are determined from ~1,000–4,000 different reads 
in each population.

We performed a Wilcoxon signed rank test to ask whether refolding  
yields differed significantly between H and L populations after six generations  
of directed evolution (Fig. 3h) and after three generations of weak stabilizing 
selection (Fig. 4b).

For statistical analysis of data from all rounds of directed evolution 
(Supplementary Fig. S1), we fitted a general linear model and tested the 
significance of each factor with an ANOVA. We then performed Tukey–honest 
significant difference to determine the differences between relevant pairs.

We performed all statistical analyses with R software (v.3.5.2).
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SMRT sequencing. To prepare DNA for SMRT sequencing59, we barcoded DNA 
from every replicate population (four H and four L populations) from each 
generation of our directed-evolution experiment with a unique barcode and 
pooled all barcoded samples to create a single library for sequencing. We chose 
the barcodes from a list of 384 barcodes recommended by Pacific BioSciences 
for the Sequel system. To create this library, we used a two PCR approach, where 
the first PCR adds a universal sequence at both ends of the target DNA. The 
universal sequence allows one to create many unique barcode combinations with 
few barcoded primers. The second PCR adds a unique barcode combination 
downstream of the universal sequence for DNA extracted from each of our 
experimental populations.

For the first PCR, we mixed 0.3 μl of Phusion Hot Start II High-Fidelity DNA 
Polymerase (Thermo), 6 μl of the GC buffer, 0.6 μl of 10 mM dNTP, 1.5 μl of 
10 μM forward and reverse primers each (Supplementary Table S5, ‘for attaching 
universal sequence’) with 2 ng of template in a 30 μl reaction. In this PCR, we used 
the following PCR conditions: 98 °C for 30 s; 15 cycles of 98 °C for 10 s, 63.2 °C 
for 15 s and 72 °C for 30 s; 72 °C for 5 min. We treated the PCR product with a 
mix of 0.25 μl of DpnI, 0.25 μl ExoI (NEB#M0568) and 3 μl of cut-smart buffer at 
37 °C for 1 h and then deactivated the enzymes at 85 °C for 20 min. We used 2 μl 
of this product as a template for the second PCR, mixing it with 0.5 μl of Phusion 
Hot Start II High-Fidelity DNA Polymerase, 10 μl of the GC buffer, 1 μl of 10 mM 
dNTP, 2.5 μl of 10 μM forward and reverse primers each (Supplementary Table S5, 
‘primers with unique barcodes’) in a 50 μl reaction. In this second PCR, we used 
the following PCR conditions: 98 °C for 30 s; 30 cycles of 98 °C for 10 s, 71.2 °C for 
15 s and 72 °C for 30 s; 72 °C for 5 min. We purified the resulting PCR product using 
a PCR purification kit and checked the purity using agarose gel electrophoresis. 
We measured the concentration of purified products using a Qubit fluorometer 
(Thermo Fisher Scientific). We submitted the library of pooled barcoded samples 
to the Functional Genomics Center Zurich, where it was purified with AMPure 
beads, ligated with appropriate adaptors and sequenced on a single cell of the 
PacBio Sequel machine using P6/C4 chemistry.

Primary data analysis. We analysed SMRT sequence data using SMRTLink, a 
web-based end-to-end workflow manager for PacBio Sequel Systems, and SMRT 
Tools, a suite of command-line tools included with SMRTLink. We chose only 
those circular consensus sequence (CCS) reads that resulted from three complete 
passes of DNA and that had a predicted accuracy of 99%. We also discarded any 
CCS reads that were shorter than 850 base pairs to exclude partial GFP sequences. 
We then de-multiplexed the CCS reads with a barcode score of 80 or higher. To 
this end, we used the 384 Sequel barcodes provided by PacBio and searched for all 
possible barcode combinations in our sequence data. We could accurately identify 
the 136 barcode combinations that we had used, out of more than 70,000 possible 
combinations. We mapped the de-multiplexed reads using the SMRT tool ‘pbalign’, 
which uses the ‘blasr’ algorithm60. We restricted the minimum mapping length to at 
least 900 base pairs, the maximum possible divergence from the ancestral sequence 
to 75% and the minimum mapping accuracy to 90%. Through this procedure, we 
recovered 819 to 4,241 reads for each population.

We then used SAMtools to convert the mapped sam files to bam format61. We 
used custom Python scripts and Molecular Evolutionary Genetics Analysis v.10.0.5 
software62 for all further data analysis.

Identification of SNPs (single nucleotide polymorphisms). We sequenced 
two clones of non-mutated ancestral GFP using SMRT sequencing. The results 
confirmed the well-known fact that single nucleotide indels are the most common 
errors in SMRT sequencing30. Because most indels are sequencing artifacts, we 
considered only point mutations for the rest of our analysis. We restricted our 
analysis to changes at the amino acid level, because including silent mutations  
can result in overestimating the number of mutations that affect a phenotype.  
We further analysed those amino acid-changing mutations that reached a 
frequency exceeding 0.1 at the end of directed evolution30.

Identification of neo-functionalizing mutations. We used whole-plasmid 
PCR to engineer single mutants by designing primers that carry the 
corresponding mutations (Supplementary Table S5). We used Phusion Hot Start 
II High-Fidelity DNA Polymerase to minimize copying errors during the PCR. 
After electro-transforming the ligation products into E. coli competent cells, we 
Sanger-sequenced several of the resulting clones and chose a correctly constructed 
plasmid for each mutant. We measured the mean green and cyan fluorescence 
for these mutants on a Fortessa cell analyser (BD Biosciences; ‘Fluorescence assay 
using flow cytometry’ provides details). We then used the two-fluorescence plots 
(cyan fluorescence versus green fluorescence) for every mutant and contrasted 
them with those of the ancestral populations to identify neo-functionalizing 
mutations (Supplementary Fig. S2) that shift the fluorescence distribution towards 
the y axis. In contrast, folding stability-improving mutations shift the fluorescence 
distribution along the diagonal of the plot, indicating an increase in both green and 
cyan fluorescence (Supplementary Fig. S2).

Refolding kinetics in selected H and L populations. We grew H and L 
populations at the end of directed evolution in 8 ml low-salt LB with 25 μg ml−1 

of kanamycin in a 10 ml tube shaken at 37 °C and 220 r.p.m. for 18 h. We used 
CelLytic™ B Cell Lysis Reagent (B7435-10 500 ml, Sigma) to extract soluble proteins 
from the collected cells by following the manufacturer’s protocol. We studied 
the refolding kinetics during 5 h by measuring cyan fluorescence (λex = 405 nm, 
λem = 510/50 nm) using a plate reader (Tecan Spark M2)21.

Stabilizing selection on green fluorescence. To allow GFP-coding genes to 
accumulate genetic variation before evolving them towards high cyan fluorescence, 
we performed three generations of directed evolution to maintain the ancestral 
green fluorescence phenotype. In each generation we performed stabilizing 
selection on green fluorescence via two consecutive steps of cell sorting. In 
each step we selected the top 70% of green-fluorescing cells (FITC channel 
with λex = 488 nm, λem = 530/30 nm). We used the same mutagenesis and library 
preparation protocols as for our main directed-evolution experiment (Methods, 
‘PCR mutagenesis’ and ‘Selection of GFP for cyan fluorescence’).

We used the populations from the third generation of this experiment as 
starting points for directed evolution towards cyan fluorescence. For this second 
phase of directed evolution, we employed the same protocols as for the main 
experiment in which we evolved cyan from green fluorescence (Methods, ‘PCR 
mutagenesis’ and ‘Selection of GFP for cyan fluorescence’), except that we evolved 
populations for five instead of six generations.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data are available in the manuscript or the supplementary materials. SMRT 
sequencing data are available at the National Center for Biotechnology Information 
with a BioProject ID PRJNA833567 (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA833567).

code availability
Custom code used in this study is available in a public GitHub repository (https://
github.com/dasmeh/Discrete_Time_Markov_Chain_Evolution).
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